首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A new theoretical model describing the steady-state growth and crystalline structure of semiconductor nanowires (NWs) is proposed and its physical consequences are considered. It is demonstrated that the Nebol’sin-Shchetinin condition (nonwetting of the NW side surface by the liquid drop) necessary for the steady-state growth of NWs according to the vapor-liquid-solid (VLS) mechanism is equivalent to the Glas condition of nucleation on the triple phase line for the monocentric NW growth. An energy criterion for the steady-state growth of NWs is formulated in the general case of faceted NW side surface. Effective surface energies are found that determine the activation barrier for nucleation at the NW top. Based on the proposed model, the issue of determining the III–V semiconductor NW crystal structure (cubic zinc blende type versus hexagonal wurtzite type) is considered. In particular, it is shown that a decrease in the surface energy of a catalyst must lead to the predominant formation of a cubic phase, which is confirmed by experimental data on the growth of GaAs nanowires according to the VLS mechanism with Au and Ga catalysts.  相似文献   

2.
Silicon nanowires (Si NWs) are the emerging nanostructures for future nanodevices. In this work we have prepared them by electron beam evaporation (EBE) through the vapor-liquid-solid (VLS) mechanism. We discuss the growth of epitaxial NWs by EBE and the possibility to control their orientation and length by changing the experimental conditions. Moreover, the effects of the surface contamination and of the Au cluster preparation on the NWs structural properties and density will be discussed. We demonstrate that any O contamination has to be avoided since just a very thin native SiO2 layer stops ad-atom diffusion on the surface and inhibits the NWs growth. Au cluster preparation has a determinant role too: by varying the procedure for their formation, it is possible to change NWs density and length. In particular, we observed that by evaporating Au on the heated substrate, the droplets active to promote NW growth are immediately formed and a faster growth process starts. The growth rate is about a factor of 4 times higher than in the sample where the Au is evaporated at room temperature and the cluster formed after a subsequent thermal annealing. On the contrary, the slower process allows the atom arrangement and ordering in an epitaxial manner, and a precise control of NW orientation can be achieved.  相似文献   

3.
We identify the entire growth parameter space and rate-limiting mechanisms in non-catalytic InAs nanowires (NWs) grown by molecular beam epitaxy. Surprisingly huge growth temperature ranges are found with maximum temperatures close to ~600°C upon dramatic increase of V/III ratio, exceeding by far the typical growth temperature range for catalyst-assisted InAs NWs. Based on quantitative in situ line-of-sight quadrupole mass spectrometry, we determine the rate-limiting factors in high-temperature InAs NW growth by directly monitoring the critical desorption and thermal decomposition processes of InAs NWs. Both under dynamic (growth) and static (no growth, ultra-high vacuum) conditions the (111)-oriented InAs NWs evidence excellent thermal stability at elevated temperatures even under negligible supersaturation. The rate-limiting factor for InAs NW growth is hence dominated by In desorption from the substrate surface. Closer investigation of the group-III and group-V flux dependences on growth rate reveals two apparent growth regimes, an As-rich and an In-rich regime defined by the effective As/In flux ratio, and maximum achievable growth rates of > 6 μm h(-1). The unique features of high-T growth and excellent thermal stability provide the opportunity for operation of InAs-based NW materials under caustic environment and further allow access to temperature regimes suitable for alloying non-catalytic InAs NWs with GaAs.  相似文献   

4.
JC Shin  C Zhang  X Li 《Nanotechnology》2012,23(30):305305
We report a non-lithographical method for the fabrication of ultra-thin silicon (Si) nanowire (NW) and nano-sheet arrays through metal-assisted-chemical-etching (MacEtch) with gold (Au). The mask used for metal patterning is a vertical InAs NW array grown on a Si substrate via catalyst-free, strain-induced, one-dimensional heteroepitaxy. Depending on the Au evaporation angle, the shape and size of the InAs NWs are transferred to Si by Au-MacEtch as is (NWs) or in its projection (nano-sheets). The Si NWs formed have diameters in the range of ~25-95 nm, and aspect ratios as high as 250 in only 5 min etch time. The formation process is entirely free of organic chemicals, ensuring pristine Au-Si interfaces, which is one of the most critical requirements for high yield and reproducible MacEtch.  相似文献   

5.
Dayeh SA  Wang J  Li N  Huang JY  Gin AV  Picraux ST 《Nano letters》2011,11(10):4200-4206
By the virtue of the nature of the vapor-liquid-solid (VLS) growth process in semiconductor nanowires (NWs) and their small size, the nucleation, propagation, and termination of stacking defects in NWs are dramatically different from that in thin films. We demonstrate germanium-silicon axial NW heterostructure growth by the VLS method with 100% composition modulation and use these structures as a platform to understand how defects in stacking sequence force the ledge nucleation site to be moved along or pinned at a single point on the triple-phase circumference, which in turn determines the NW morphology. Combining structural analysis and atomistic simulation of the nucleation and propagation of stacking defects, we explain these observations based on preferred nucleation sites during NW growth. The stacking defects are found to provide a fingerprint of the layer-by-layer growth process and reveal how the 19.5° kinking in semiconductor NWs observed at high Si growth rates results from a stacking-induced twin boundary formation at the NW edge. This study provides basic foundations for an atomic level understanding of crystalline and defective ledge nucleation and propagation during [111] oriented NW growth and improves understanding for control of fault nucleation and kinking in NWs.  相似文献   

6.
Vapor-liquid-solid (VLS) nanowires (NWs) typically grow in [111] directions. Previously, the authors have demonstrated guided Si NW growth, engineering the VLS NWs to grow in a [110] direction against a SiO(2) surface. In this work, the authors demonstrate guided high-quality Ge nanowire growth against a SiO(2) surface in the substrate plane to bridge between two Si mesas. The authors explore the interfaces between a Ge NW and the two Si device-layer mesas and report high-quality, epitaxial interfaces between the Ge NW and both Si mesas.  相似文献   

7.
We report detailed structural analysis of 〈111〉 oriented silicon nanowires (NWs) grown by UHV–CVD using the VLS process with a gold catalyst. STEM-HAADF observations have revealed an unexpected inhomogeneous distribution of gold nanoclusters on the NW surface. Gold is mainly distributed on three sides among the six {112}-sidewalls and is anchored on upward {111} facets. This original observation brought us a new comprehension of the faceting mechanisms. The stability of the 〈111〉 growth direction needs the formation of facets on {112}-sidewalls with energetically favorable planes. We demonstrate that the initial formation of covered facets with a three-fold symmetry is driven by the formation of {111} Au/Si interfaces between the nucleated Si NW and the Au droplet.  相似文献   

8.
We report the growth of germanium nanowires (Ge NWs) with single-step temperature method via vapour-liquid-solid (VLS) mechanism in the low pressure chemical vapour deposition (CVD) reactor at 300 degrees C, 280 degrees C, and 260 degrees C. The catalyst used in our experiment was Au nanoparticles with equivalent thicknesses of 0.1 nm (average diameter approximately 3 nm), 0.3 nm (average diameter approximately 4 nm), 1 nm (average diameter approximately 6 nm), and 3 nm (average diameter approximately 14 nm). The Gibbs-Thomson effect was used to explain our experimental results. The Ge NWs grown at 300 degrees C tend to have tapered structure while the Ge NWs grown at 280 degrees C and 260 degrees C tend to have straight structure. Tapering was caused by the uncatalysed deposition of Ge atoms via CVD mechanism on the sidewalls of nanowire and significantly minimised at lower temperature. We observed that the growth at lower temperature yielded Ge NWs with smaller diameter and also observed that the diameter and length of Ge NWs increases with the size of Au nanoparticles for all growth temperatures. For the same size of Au nanoparticles, Ge NWs tend to be longer with a decrease in temperature. The Ge NWs grown at 260 degrees C from 0.1-nm-thick Au had diameter as small as approximately 3 nm, offering an opportunity to fabricate high-performance p-type ballistic Ge NW transistor, to realise nanowire solar cell with higher efficiency, and also to observe the quantum confinement effect.  相似文献   

9.
The issue of the minimum diameter of nanodimensional whiskers (NWs) which can be achieved under given deposition conditions is considered within the framework of a kinetic model describing the NW growth according to the vapor-liquid-solid (VLS) mechanism. Based on the results of numerical modeling, it is shown that the minimum NW diameter can be determined not only by the Gibbs-Thomson dimensional effect, but also by the kinetic factors controlling growth on the substrate surface. The results of numerical calculations of the growth rate of NWs with various diameters are presented.  相似文献   

10.
A robust and facile method has been developed to obtain directional growth of silica nanowires (SiO2NWs) by regulating mass transport of silicon monoxide (SiO) vapor. SiO2NWs are grown by vapor–liquid–solid (VLS) process on a surface of gold‐covered spherical photonic crystals (SPCs) annealed at high temperature in an inert gas atmosphere in the vicinity of a SiO source. The SPCs are prepared from droplet confined colloidal self‐assembly. SiO2NW morphology is governed by diffusion‐reaction process of SiO vapor, whereby directional growth of SiO2NWs toward the low SiO concentration is obtained at locations with a high SiO concentration gradient, while random growth is observed at locations with a low SiO concentration gradient. Growth of NWs parallel to the supporting substrate surface is of great importance for various applications, and this is the first demonstration of surface‐parallel growth by controlling mass transport. This controllable NW morphology enables production of SPCs covered with a large number of NWs, showing multilevel micro‐nano feature and high specific surface area for potential applications in superwetting surfaces, oil/water separation, microreactors, and scaffolds. In addition, the controllable photonic stop band properties of this hybrid structure of SPCs enable the potential applications in photocatalysis, sensing, and light harvesting.  相似文献   

11.
Celano  Thomas A.  Kim  Seokhyoung  Hill  David J.  Cahoon  James F. 《Nano Research》2020,13(5):1465-1471

Bottom-up synthesis of semiconductor nanowires (NWs) by the vapor-liquid-solid (VLS) mechanism has enabled diverse technological applications for these nanomaterials. Unlike metallic NWs, however, it has been challenging to form large-area interconnected NW networks. Here, we generate centimeter-scale meshes of mechanically and electrically interconnected Si NWs by sequentially growing, collapsing, and joining the NWs using a capillarity-driven welding mechanism. We fabricate meshes from VLS-grown NWs ranging in diameter from 20 to 100 nm and find that the meshes are three-dimensional with a thickness ranging from ~ 1 to ~ 10 microns depending on the NW diameter. Optical extinction measurements reveal that the networks are semi-transparent with a color that depends on the absorption and scattering characteristics of individual NWs. Moreover, active voltage contrast imaging of both centimeter- and micron-scale meshes reveals widespread electrical connectivity. Using a sacrificial layer, we demonstrate that the mesh can be liberated from the growth substrate, yielding a highly flexible and transparent film. Electrical transport measurements both on the growth substrate and on liberated, flexible films reveal electrical conduction across a centimeter scale with a sheet resistance of ~ 160–180 kΩ/square that does not change significantly upon bending. Given the ability to encode complex functionality in semiconductor NWs through the VLS process, we believe these meshes of networked NWs could find application as neuromorphic memory, electrode scaffolds, and bioelectronic interfaces.

  相似文献   

12.
Dayeh SA  Yu ET  Wang D 《Nano letters》2007,7(8):2486-2490
We have studied the dependence of Au-assisted InAs nanowire (NW) growth on InAs(111)B substrates as a function of substrate temperature and input V/III precursor ratio using organometallic vapor-phase epitaxy. Temperature-dependent growth was observed within certain temperature windows that are highly dependent on input V/III ratios. This dependence was found to be a direct consequence of the drop in NW nucleation and growth rate with increasing V/III ratio at a constant growth temperature due to depletion of indium at the NW growth sites. The growth rate was found to be determined by the local V/III ratio, which is dependent on the input precursor flow rates, growth temperature, and substrate decomposition. These studies advance understanding of the key processes involved in III-V NW growth, support the general validity of the vapor-liquid-solid growth mechanism for III-V NWs, and improve rational control over their growth morphology.  相似文献   

13.
Silicon nanowires (NWs) and vertical nanowire-based Si/Ge heterostructures are expected to be building blocks for future devices, e.g. field-effect transistors or thermoelectric elements. In principle two approaches can be applied to synthesise these NWs: the ‘bottom-up’ and the ‘top-down’ approach. The most common method for the former is the vapour-liquid-solid (VLS) mechanism which can also be applied to grow NWs by molecular beam epitaxy (MBE). Although MBE allows a precise growth control under highly reproducible conditions, the general nature of the growth process via a eutectic droplet prevents the synthesis of heterostructures with sharp interfaces and high Ge concentrations. We compare the VLS NW growth with two different top-down methods: The first is a combination of colloidal lithography and metal-assisted wet chemical etching, which is an inexpensive and fast method and results in large arrays of homogenous Si NWs with adjustable diameters down to 50 nm. The second top-down method combines the growth of Si/Ge superlattices by MBE with electron beam lithography and reactive ion etching. Again, large and homogeneous arrays of NWs were created, this time with a diameter of 40 nm and the Si/Ge superlattice inside.  相似文献   

14.
Topotaxial growth of Au(x) Ag(1-x) alloy nanowires (NWs) by postepitaxial deposition of Ag vapor on Au NWs and investigation of their plasmonic properties are reported. Ag vapor is supplied onto the epitaxially grown Au NWs, topotaxially turning them into Au(x) Ag(1-x) alloy NWs. The original geometries and alignments of the Au nanostructures are well preserved, while the composition of the alloy NWs is controlled by varying the Ag vapor supply time. The Au(0.5) Ag(0.5) NWs show high surface-enhanced Raman scattering (SERS) activity comparable to that of Ag NWs as well as highly increased oxidation resistance. The plasmon-active wavelength range of the Au(0.5) Ag(0.5) NW is significantly extended to the blue region compared to Au NWs. The Au(x) Ag(1-x) alloy NWs that have plasmonic activity in the blue region in addition to high corrosion resistance will make a superb material for practical plasmonic devices including SERS sensors and optical nanoantennas.  相似文献   

15.
Huang H  Ren X  Ye X  Guo J  Wang Q  Zhang X  Cai S  Huang Y 《Nanotechnology》2010,21(47):475602
The dependence of crystal structure on contributions of adatom diffusion (ADD) and precursor direct impingement (DIM) was investigated for vapor-liquid-solid growth of InAs nanowires (NWs). The ADD contributions from the sidewalls and substrate surface can be changed by using GaAs NWs of different length as the basis for growing InAs NWs. We found that pure zinc-blende structure is favored when DIM contributions dominate. Moreover, without changing the NW diameter or growth parameters (such as temperature or V/III ratio), a transition from zinc-blende to wurtzite structure can be realized by increasing the ADD contributions. A nucleation model is proposed in which ADD and DIM contributions play different roles in determining the location and phase of the nucleus.  相似文献   

16.
Yan X  Zhang X  Ren X  Huang H  Guo J  Guo X  Liu M  Wang Q  Cai S  Huang Y 《Nano letters》2011,11(9):3941-3945
InAs quantum dots (QDs) are grown epitaxially on Au-catalyst-grown GaAs nanowires (NWs) by metal organic chemical vapor deposition (MOCVD). These QDs are about 10-30 nm in diameter and several nanometers high, formed on the {112} side facets of the GaAs NWs. The QDs are very dense at the base of the NW and gradually sparser toward the top until disappearing at a distance of about 2 μm from the base. It can be concluded that these QDs are formed by adatom diffusion from the substrate as well as the sidewalls of the NWs. The critical diameter of the GaAs NW that is enough to form InAs QDs is between 120 and 160 nm according to incomplete statistics. We also find that these QDs exhibit zinc blende (ZB) structure that is consistent with that of the GaAs NW and their edges are faceted along particular surfaces. This hybrid structure may pave the way for the development of future nanowire-based optoelectronic devices.  相似文献   

17.
We report on the selective area growth of GaN nanowires (NWs) on nano-patterned Si(111) substrates by metalorganic chemical vapor deposition. The nano-patterns were fabricated by the oxidation of Si followed by the etching process of Au nano-droplets. The size of formed nano-pattern on Si(111) substrate was corresponding to the size of Au nano-droplet, and the diameter of GaN NWs grown was similar to the diameter of fabricated nano-pattern. The interesting phenomenon of using the nano-patterned Si(111) substrates is the formation of very clear substrate surface even after the growth of GaN NWs. However, in the case of GaN NWs grown using Au nano-droplets, there was several nanoparticles including GaN bulk grains on the Si(111) substrates. The smooth surface morphology of nano-patterned Si(111) substrates was attributed to the presence of SiO2 layer which prevents the formation of unnecessary GaN particles during the GaN NW growth. Therefore, we believe that nano-patterning method of Si(111) which was obtained by the oxidation of Si(111) substrate and subsequent Au etching process can be utilized to grow high-quality GaN NWs and its related nano-device applications.  相似文献   

18.
19.
The high electron mobility has granted indium arsenide(InAs) nanowires(NWs) as an important class of nanomaterials for high performance electronics such as field-effect transistors(FETs).We reviewed recent progresses on the studies of quantum coherence,gate tunable one-dimensional(1D) confinement and spin orbit interaction(SOI) in InAs NW based electronic and thermoelectric transport devices.We also demonstrated gas sensing response of InAs NW FETs and elucidated the mechanism via a gating experiment.By using InAs NWs as an example,these fundamental transport studies have shed important lights on the potential thermoelectric,spintronic and gas sensing applications of semiconductor NWs where the 1D confinement,SOI or surface states effects are exploited.  相似文献   

20.
Single-crystal InAs nanowires (NWs) are synthesized using metal-organic chemical vapor deposition (MOCVD) and fabricated into NW field-effect transistors (NWFETs) on a SiO(2)/n(+)-Si substrate with a global n(+)-Si back-gate and sputtered SiO(x)/Au underlap top-gate. For top-gate NWFETs, we have developed a model that allows accurate estimation of characteristic NW parameters, including carrier field-effect mobility and carrier concentration by taking into account series and leakage resistances, interface state capacitance, and top-gate geometry. Both the back-gate and the top-gate NWFETs exhibit room-temperature field-effect mobility as high as 6580 cm(2) V(-1) s(-1), which is the lower-bound value without interface-capacitance correction, and is the highest mobility reported to date in any semiconductor NW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号