首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal treatment is a traditional method for food processing, which can kill microorganisms but also lead to physicochemical and sensory quality damage, especially to temperature-sensitive foods. Nowadays consumers’ increasing interest in microbial safety products with premium appearance, flavor, great nutritional value and extended shelf-life has promoted the development of emerging non-thermal food processing technologies as alternative or substitution to traditional thermal methods. Fish is an important and world-favored food but has a short shelf-life due to its extremely perishable characteristic, and the microbial spoilage and oxidative process happen rapidly just from the moment of capture, making it dependent heavily on post-harvest preservation. The applications of novel non-thermal food processing technologies, including high pressure processing (HPP), ultrasound (US), pulsed electric fields (PEF), pulsed light (PL), cold plasma (CP) and ozone can extend the shelf-life by microbial inactivation and also keep good sensory quality attributes of fish, which is of high interest for the fish industry. This review presents the principles, developments of emerging non-thermal food processing technologies, and also their applications in fish industry, with the main focus on microbial inactivation and sensory quality. The promising results showed great potential to keep microbial safety while maintaining organoleptic attributes of fish products. What’s more, the strengths and weaknesses of these technologies are also discussed. The combination of different food processing technologies or with advanced packaging methods can improve antimicrobial efficacy while not significantly affect other quality properties under optimized treatment.  相似文献   

2.
During the last 25 years, consumer demands for more convenient and varied food products have grown exponentially, together with the need for faster production rates, improved quality and extension in shelf life. These requests together with the severity of the traditional food processing technologies were driving forces for improvements in existing technologies and for the development of new food preservation technologies. Therefore, many technological developments have been directed towards unit operations such as pasteurization, sterilization, cooking and drying, and currently the new technological approaches for food preservation are serious candidates to replace the traditional well-established preservation processes. The aim of this review is to discuss the environmental impact that some of the most promising novel food preservation technologies may represent in terms of energy efficiency, water savings and reduced emissions. The emergence of novel thermal and non-thermal technologies allows producing high quality products with improvements in terms of heating efficiency and, consequently, in energy savings. Most of these technologies are locally clean processes and therefore appear to be more environment-friendly, having less environmental impact than the traditional ones. Novel processing technologies are increasingly attracting the attention of food processors once they can provide food products with improved quality and a reduced environmental footprint, while reducing processing costs and improving the added-value of the products.  相似文献   

3.
Non-thermal emerging technologies in the sector of food processing have often been cited by researchers as an alternative to conventionally heat treatments for food processing in order to develop safe foods with minimal damage to nutritional and sensory properties. Non-thermal emerging technologies for foods processing have been widely developed in Europe and U.S.A. However, the interest in these technologies and commercialisation opportunities started catching up in Latin America. Thus, this review describes the basic principles and main effect of this technologies in the food and the recent scientific reports on its applications and potential advantages of the so-called non-thermal emerging technologies like ultrasound, high hydrostatic pressure, pulsed electric field, ionising radiation and atmospheric cold plasma, as alternative food preservation process. This review focuses on the current status in Latin America of novel non-thermal food processing technologies, highlighting the limits for scaling up to industrial level in order to be commercially successful.  相似文献   

4.
非热杀菌技术可有效保持食品中的营养成分,在食品加工领域广受关注。本文主要论述了超高压技术(UHPP)、高压脉冲电场技术(HIPEF)、电子束辐射杀菌、高压CO2杀菌(HPCD)技术等非热杀菌技术在乳制品加工中的研究进展,旨在为非热杀菌技术在乳制品中的应用提供参考意见。  相似文献   

5.
近年来,新型食品加工技术在食品加工领域的广泛研究应用,为推进传统食品保存,缓解因消费者需求多样化所带来的压力提供了有力保障。本文简述了新型热和非热食品加工技术的机制、工业应用和商业价值,概述并讨论新型食品加工技术的研究进展和影响其工业应用的因素。从生产水平上看,公司的技术、规模、市场份额和资金吸纳能力会影响新型技术在工业上的应用。从技术层面看,新型技术本身的特征,如技术开发的成本,相关风险和相对优势等也会影响新型加工技术的普及。因此本文深入分析新型热和非热食品加工技术的开发、应用以及影响其接受度的因素,这对新型热和非热食品加工技术的商业化利用至关重要。  相似文献   

6.
近年来,非热加工技术在食品杀菌保鲜领域的应用受到广泛关注。然而,大量研究表明,非热加工技术能够诱导微生物发生亚致死损伤。亚致死损伤是指微生物介于存活和死亡之间的一种损伤状态,可造成潜在的食品安全风险。本文综述了脉冲电场、高压二氧化碳、冷等离子体、高静水压等非热加工技术诱导微生物亚致死损伤的最新研究进展,探讨了亚致死损伤微生物的检测和控制方法,并展望了今后的研究方向,以期为研究亚致死损伤微生物及其控制技术提供理论参考。  相似文献   

7.
Consumer demand and current market conditions warrant investigation of dairy processing technologies that can deliver improved product quality and stability and reduced energy use during processing, without compromising product and process safety. One candidate technology for the extension of shelf-life in dairy products is pulsed electric field (PEF) processing. PEF is considered to be an effective, non-thermal intervention that appears to hold some promise. Research on the application of PEF to control spoilage and pathogenic microorganisms and enzyme systems in dairy products spans a wide array of processing equipment and reaction conditions. PEF has been reported to effectively reduce the numbers of both pathogens and spoilage organisms in milk; however, there is a high degree of variability between studies. The application of PEF in combination with lower temperature thermal processing can deliver comparable reductions in microbial load without significant detrimental effects to the sensory and physico-chemical properties of food products.  相似文献   

8.
The need to fulfill consumer demand for fresh products without compromising microbial food safety and quality has increased the interest of the food industry in low-temperature innovative processes for food preservation. Compared to thermal processing, these emerging technologies rely on physical processes, such as high hydrostatic pressure, ionizing radiation, ultrasonication, pulsed electric fields, ultraviolet radiation and cold plasmas that are able to inactivate microorganisms at ambient or sublethal temperatures. This latter treatment is one of the more promising food preservation technologies. In this review we survey the main factors affecting the sensitivity and resistance of Salmonella to cold atmospheric gas plasmas. A more complete understanding of the factors involved in inactivation by this emerging technology will enhance its implementation in food preservation.  相似文献   

9.
色泽是果蔬十分重要的表观属性,与果蔬本身含有的天然色素高度相关,是判断其品质是否发生变化的重要指标之一。热加工以及非热加工技术广泛应用于果蔬产品的加工。传统果蔬加工技术以热力去皮、热烫、碱液去皮、干燥、油炸等热加工技术为主,加工中使用的高温易对果蔬的色泽品质造成不可逆转的影响。近年来,新型热加工和非热加工技术逐渐被探索,酶法去皮、红外线、超声波、脉冲电场、高压处理、低温等离子体等非热加工技术在果蔬加工维持色泽方面起到了积极的作用。然而目前综合两种加工技术对果蔬加工产品色泽影响的讨论和对比研究较少,明确各法的原理、使用条件、工艺参数及优缺点对于加工高质量的果蔬产品具有重要意义。因此该研究概述了各色素的结构特征以及理化特性,归纳和比较了热加工与非热加工技术的关键技术点和对果蔬色泽稳定性的影响,讨论了影响果蔬色泽的关键因素,最后对果蔬在加工过程中的应对的挑战提出了有关建议,以期为热加工与非热加工技术对果蔬的护色应用提供指导。  相似文献   

10.
酱腌菜是受大众喜欢的传统食品,近年来随着新工艺、新品种的出现,人们也加强了对其防腐技术的研究以期延长产品的货架期。本文对目前酱腌菜防腐技术研究进展情况进行了综述,包括热杀菌技术如巴氏杀菌、微波杀菌,非热杀菌技术如超高压杀菌、臭氧杀菌、辐照杀菌、低温等离子体杀菌、高密度二氧化碳杀菌,真空包装或充气包装技术,添加化学防腐剂或添加来源于微生物、植物或动物的天然防腐剂等。生产企业可根据产品特点选择一种或多种防腐技术满足防腐要求。新型非热杀菌技术以及天然防腐剂虽然能够提高产品品质并具有更好的安全性,但目前应用并不广泛,建议酱腌菜生产企业进一步加强对新型杀菌技术以及天然防腐剂的应用研究,不断满足人们对产品健康、安全的需求。  相似文献   

11.
The demand for raw and fresh dairy products with the desired organoleptic characteristics and health benefits led to research in non-thermal processing technologies aiming to retain all the product qualities and nutrients. Irradiation is an emerging non-thermal technology used in destroying micro- and macroorganisms that might exist in food by exposure to either gamma (γ) rays from radioactive isotopes (cobalt60 or caesium137) or an electron accelerator (electron beam or X-radiation) under a controlled environment. With the endorsement of many international food and health organisations such as the Food and Agriculture Organization (FAO) and World Health Organization (WHO), irradiation is becoming more widely researched as a process to maintain quality, improve safety and reduce quarantine and post-harvest loss. Irradiation has the potential for allergenicity reduction and the provision of a sterile diet for immunocompromised patients. Unlike other food categories, the use of irradiation as a preservative technique on dairy products has received little attention due to the complexity of the product varieties. Whilst being accepted in some countries, the adoption of irradiation as an alternative measure of treating and preventing potential problems in the food chain faces strict opposition in many countries. In this review, the focus is on the radiation processing as an emerging technology and its specific application on dairy products.  相似文献   

12.
白妍  葛雨珺  向迎春  李苑  丁甜  胡亚芹 《食品科学》2019,40(15):314-322
传统热杀菌会对食品品质产生不利影响,造成食品颜色变化、产生异味、营养损失等不良后果;非热杀菌技术是食品工业新型加工技术,处理过程中可以保持相对较低的温度,对食品的色、香、味以及营养成分影响较小;同时有利于保持食品中各种功能成分的生理活性,可以满足消费者对高品质食品的要求。芽孢在加工过程中抗性强,在食品中萌发和生长的潜力较大,因此,利用低热或非热灭菌技术对芽孢进行灭活是当前食品工业面临的严峻挑战和重要课题。本文综述现有非热杀菌技术(如高静压技术、高压CO2技术、低温等离子体技术、紫外辐射技术、高压脉冲电场技术等)独立处理或与其他处理技术相结合对芽孢灭活的效果及其机理,着重讨论其在食品行业中的应用以及芽孢灭活的分子机制,以期为生产安全食品、减少不同种类食品中微生物污染提供解决方案。  相似文献   

13.
The main purpose of this research was to investigate the extent of novel non-thermal food processing technologies usage in the United States. A survey was conducted to food experts to study the major reasons for using novel technologies, the limitations for not implementing specific technologies, and the main drivers for innovation of non-thermal food processing technologies. The survey study focused on the high-pressure processing, pulsed electric field, pulsed light, irradiation, ultrasound, oscillating magnetic fields, and cold atmospheric plasma technologies. High pressure processing (35.6%) was the most commonly used non-thermal food processing technologies, followed by pulsed electric field (20%). Rapidly increasing novel technologies included cold atmospheric plasma (14.1%) and oscillating magnetic fields (14.1%). More than 70% of the respondents indicated that the main factor for choosing non-thermal food processing technology was better nutrient and sensory properties. High investment (41%) was the major limitation for implementing non-thermal food processing technologies. The results indicated the main drivers for innovation were equipment manufacturers (43.8%) and government research (42.3%). The results emphasized the need for new and improved innovative, non-thermal technologies to provide a balance between safety and minimal processing.Industrial relevanceThis research provides industry with an overview of perceptions food managers, scientists and technologists of novel non-thermal food processing technologies. This research investigated factors that food companies use to implement particular food processing technologies and the limitations prohibit them from using such technologies. There are technologies which are still under development and are currently being conducted to extend the shelf life of certain foods while preserving freshness and natural nutrients. This study investigated technologies currently being used, ones still under development, and the main drivers for innovation of these technologies within the United States.  相似文献   

14.
即食肉制品在生产和消费环节极易受到微生物污染,严重影响其品质和安全。传统热杀菌技术虽然能有效灭活微生物,但会对即食肉制品的营养和感官品质产生不良影响。近年来,非热杀菌技术逐渐受到关注,该技术处理温度低,对食品的风味、色泽和营养成分影响较小,避免了传统热杀菌技术造成的食品品质劣变问题。目前,在即食肉制品中应用较为广泛的非热杀菌技术主要有超高压、辐照、紫外照射、脉冲光照射和冷等离子体。本文综述上述5 种非热杀菌技术对即食肉制品的杀菌作用及对其品质的影响,以期为非热杀菌技术在即食肉制品加工中的应用提供参考。  相似文献   

15.
王哲  董丽  胡小松  陈芳 《现代食品科技》2023,39(11):310-322
西瓜由于具有较高的营养价值和优良的感官品质,深受广大消费者的喜爱。作为西瓜生产大国,西瓜类产品尤其是西瓜汁的开发和应用在我国有着广阔的前景。作为果汁加工的优质原料,西瓜的酸度低且水分活性高,这使其容易受到腐败微生物的污染。因此,西瓜汁的保质期往往较短。传统的热加工技术如巴氏杀菌的应用,可以在一定程度上延长西瓜汁的保质期。但西瓜作为一种热敏性水果,西瓜汁的营养品质和感官特性也极易因受热而被严重影响。相比之下,包括超高压(High Hydrostatic Pressure,HHP)、高压二氧化碳(High Pressure Carbon Dioxide,HPCD)、超声波、辐射杀菌、高压脉冲电场(High Intensity Pulsed Electric Field,HIPEF)和膜技术等在内的非热加工技术在西瓜汁的应用方面彰显出更大的优势。此外,根据现有的研究,大多数加工技术都更加侧重于灭菌和钝酶效果,极少关注对西瓜汁风味的影响。为了对西瓜汁风味有更清晰的认识并推动其产业化发展,该研究综述了西瓜汁中的特征风味、不同加工技术对风味的影响,并针对加工后西瓜汁的风味保留提出了一系列的改良手段。  相似文献   

16.
Consumers are demanding food products with high added value concerning their sensory properties and safety. In this scenario, updates in industrial food processing have been claimed by the consumer market due to the undesirable sensory properties associated with severe heat treatments. Therefore, the development of novel food processes based on innovative non-thermal technologies is one of the biggest trends for the next years. In this context, low-frequency and high-intensity ultrasound technology has been pointed out as a promising strategy to produce high-technological food products and ingredients. Thereby, the recent advances and challenges regarding the application of acoustic energy processing on the dairy, meat, bakery, and minimally processed products, beverages, and food ingredients were reviewed from the perspective of energy performance. Ultrasound has provided high-technological food products through various ultrasound systems at different amplitudes and/or powers. These have preserved or improved food products' sensory characteristics.  相似文献   

17.
18.
近年来, 非热加工技术在水产品加工领域受到广泛关注。非热加工技术可对水产蛋白进行改性处理, 改善其功能特性, 提高其利用率, 实现其高值化利用, 并可减少热敏性营养物质的损失。与传统热加工相比, 非热加工技术在保障食品安全、保持食品原有的营养和品质等方面表现出了更好的应用前景。本文综述了超声波、超高压、高密度CO2、冷等离子体、辐照等非热加工技术在水产蛋白加工中的应用, 并阐述了各种非热加工技术对水产蛋白的高级结构及功能特性的影响, 可为拓宽水产蛋白的加工利用途径提供理论支撑。但是新兴的非热加工技术目前仍处于开发研究阶段, 大规模的工业应用仍需要更多和更深入的研究。  相似文献   

19.
Processed foods are popular and their consumption is expected to grow globally. Food processing and manufacturing promote lipid oxidation in foods rich in polyunsaturated fatty acids and cholesterol. This review focuses on how various food manufacturing/processing techniques promote lipid oxidation in grains, meats and meat products, dairy and fats/oils. This review also considers emerging evidence from animal and human studies that suggest a link between dietary oxidised lipid consumption and chronic disease risk. An update on novel food technologies that limit food lipid oxidation is discussed so as to inform both food scientists and dietitians/nutritionists to direct future efforts in not only continuing to bring these novel technologies to the market place but also conduct clinical trials to establish their role in human health.  相似文献   

20.
Abstract

Innovative food processing technologies have been widely investigated in food processing research in recent years. These technologies offer key advantages for advancing the preservation and quality of conventional foods, for combatting the growing challenges posed by globalization, increased competitive pressures and diverse consumer demands. However, there is a need to increase the level of adoption of novel technologies to ensure the potential benefits of these technologies are exploited more by the food industry. This review outlines emerging thermal and non-thermal food processing technologies with regard to their mechanisms, applications and commercial aspects. The level of adoption of novel food processing technologies by the food industry is outlined and the factors that impact their industrial adoption are discussed. At an industry level, the technological capabilities of individual companies, their size, market share as well as their absorptive capacity impact adoption of a novel technology. Characteristics of the technology itself such as costs involved in its development and commercialization, associated risks and relative advantage, and level of complexity and compatibility influence the technology's adoption. The review concludes that a deep understanding of the development and application of a technology along with the factors influencing its acceptance are critical to ensure its commercial adoption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号