首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Strawberries inoculated with Salmonella enterica, Listeria monocytogenes (108 CFU/mL, 50 μL) and murine norovirus (MNV-1; 106 TCID50/mL, 50 μL), were washed for 2 min in a water-assisted UV-C light tank (WUVC) combined or not with 40 mg/L of peracetic acid (WUVC+PA), and 200 mg/L of free chlorine solution (NaClO) with the UV-C lamps switched off. Moreover, a ‘conventional’ dry UV-C treatment (DUVC) was also tested. After 2-min exposure, washing sanitization with chemical agents gave the highest reduction for both bacteria (ca. ≥ 3.3 log CFU/g) and MNV-1 (≥1.8 log TCID50/mL). DUVC treatment proved to be the least effective technology (≤0.6 log CFU/g for bacteria and 1.5 log TCID50/mL for MNV-1). Regarding wash water, no presence of L. monocytogenes and S. enterica were reported with WUVC+PA and NaClO sanitization. After disinfection, samples were frozen at −70 ± 2 °C in a cryogenic freezing cabinet with liquid nitrogen (N2). For both pathogens, frozen storage after washing substantially enhanced their inactivation in the first 3 days (1.1–4.9 log UFC/g) compared to the reductions obtained the following sampling points (0.0–0.8 log UFC/g). After 90 days, L. monocytogenes and S. enterica were not detected on the samples treated with water-assisted methodologies (WUVC, WUVC+PA and NaClO treatments), whilst MNV-1 was little affected. Further studies are needed to improve norovirus inactivation on frozen strawberries.Industrial relevanceThe present work provides relevant information to the frozen food industry regarding a suitable decontamination alternative to chlorine sanitation. Low-dose immersion-assisted UV-C allows inactivation and inhibition of pathogenic microbiota while generates non-toxic byproducts and allows reusing the process water, contributing to the so-called “smart green growth” attended to provide a more innovative and sustainable future for the food industry.  相似文献   

2.
The purpose of this study was to evaluate the activity of a novel antimicrobial substance lauric arginate ester (LAE) against selected foodborne pathogens (Escherichia coli O157:H7, Listeria monocytogenes and Salmonella spp.) in biofilm. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined and showed that LAE exhibits a strong antimicrobial activity. Biofilms were grown on abiotic stainless steel, rubber, MBEC biofilm device) and biotic (lettuce) surfaces. The efficacy of LAE (50, 100 and 200 ppm) at reducing the biofilm cells on these surfaces was examined by applying LAE for 2 h. Results revealed that LAE exhibited the reduction in biofilm bacteria up to 7 log CFU cm?2, 3.5 log CFU cm?2, 4.0 log CFU peg?1 and 1.5 log CFU cm?2 on stainless steel, rubber, MBEC and lettuce surfaces, respectively. Overall, these results suggest that LAE has been shown to be a potential alternative to control bacteria in biofilm mode in food industry.  相似文献   

3.
Natural compounds with preservative activity have gained prominence in the field of food science as an alternative to traditional additives. To be effective, biopreservatives must have antioxidant and/or antimicrobial activities, characteristics often found in the essential oils (EO). This study aimed to verify the antimicrobial and antioxidant activity of EO from pink pepper tree fruit. Antimicrobial activity was evaluated in vitro on 18 bacteria, and in situ (Minas-type fresh cheese) against Listeria monocytogenes during storage (30 days/4 °C). The EO from ripe fruit showed the greatest activity in in vitro tests (MBC of 6.8 mg/mL for L. monocytogenes) and exhibited biopreservative activity in situ, having reduced the development of L. monocytogenes by 1.3 log CFU/g in 30 days. The values of peroxides and malonaldehydes were reduced by 3 Meq O2/Kg and 0.15 mg MDA/Kg, respectively, in 30 days. Results demonstrate that this EO has the potential to act as a preservative in food.Industrial relevanceThe pink pepper tree (Schinus terebinthifolius Raddi) is a plant with favorable features for industrial use, but little exploited by the food industry so far. In this work, the essential oil (EO) of the pink pepper tree was presented as an alternative to us of preservatives traditionally applied in food. For this, antimicrobial and antioxidant activities of the EO were evaluated and discussed, analyzing its effects initially in vitro and after in situ, in order to infer the technological potential for application this extract may have use as a food biopreservative.  相似文献   

4.
5.
This study investigated the antimicrobial activity of 405 nm light-emitting diode (LED) with and without riboflavin against Listeria monocytogenes in phosphate buffered saline (PBS) and on smoked salmon at different storage temperatures and evaluated its impact on food quality. The results show that riboflavin-mediated LED illumination in PBS 25 °C significantly inactivated L. monocytogenes cells by 6.2 log CFU/mL at 19.2 J/cm2, while illumination alone reduced 1.9 log CFU/mL of L. monocytogenes populations at 57.6 J/cm2. L. monocytogenes populations on illuminated smoked salmon decreased by 1.0–2.2 log CFU/cm2 at 1.27–2.76 kJ/cm2 at 4, 12, and 25 °C, regardless of the presence of riboflavin. Although illumination with and without riboflavin caused the lipid peroxidation and color change in smoked salmon, this study demonstrates the potential of a 405 nm LED to preserve the smoked salmon products, reducing the risk of listeriosis.  相似文献   

6.
Biofilm formation is a growing concern in the food industry. Escherichia coli O157:H7 is one of the most important foodborne pathogens that can persists in food and food‐related environments and subsequently produce biofilms. The efficacy of bacteriophage BPECO 19 was evaluated against three E. coli O157:H7 strains in biofilms. Biofilms of the three E. coli O157:H7 strains were grown on abiotic (stainless steel, rubber, and minimum biofilm eradication concentration [MBECTM] device) and biotic (lettuce) surfaces at different temperatures. The effectiveness of bacteriophage BPECO 19 in reducing preformed biofilms on these surfaces was further evaluated by treating the surfaces with a phage suspension (108 PFU/mL) for 2 h. The results indicated that the phage treatment significantly reduced (P  < 0.05) the number of adhered cells in all the surfaces. Following phage treatment, the viability of adhered cells was reduced by ≥3 log CFU/cm2, 2.4 log CFU/cm2, and 3.1 log CFU/peg in biofilms grown on stainless steel, rubber, and the MBECTM device, respectively. Likewise, the phage treatment reduced cell viability by ≥2 log CFU/cm2 in biofilms grown on lettuce. Overall, these results suggested that bacteriophages such as BPECO 19 could be effective in reducing the viability of biofilm‐adhered cells.  相似文献   

7.
The objective of this study was to evaluate the effect of steam pasteurization on the inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes biofilms on stainless steel and polyvinyl chloride (PVC). Biofilms were formed on a stainless steel and PVC coupon by using a mixture of three strains each of three foodborne pathogens. Six-day-old biofilms on stainless steel and PVC coupons were treated with steam at 75 and 85 °C for 5, 10, 20, 30, 40, and 50 s. Biofilm cells of E. coli O157:H7, S. Typhimurium, and L. monocytogenes on stainless steel were reduced by more than 6 log CFU/coupon after exposure to steam at 75 °C for 30, 40, and 30 s, respectively, and at 85 °C for 30, 20, and 20 s, respectively. Steam treatment resulted in less reduction in the levels of biofilm cells on PVC coupons. Biofilm cells of E. coli O157:H7, S. Typhimurium, and L. monocytogenes were reduced by 1.78, 2.04, and 1.29 log CFU/coupon, respectively, after 50 s of exposure to steam at 75 °C. Exposure to steam at 85° for 50 s reduced biofilm cells of E. coli O157:H7, S. Typhimurium, and L. monocytogenes by 2.53, 3.01, and 1.70 log CFU/coupon, respectively. The results of this study suggest that steam pasteurization has potential as a biofilm control method by the food industry.  相似文献   

8.
The study aimed at using essential oil (EO) alone or combined EO with nisin and low dose γ‐irradiation to evaluate their antibacterial effect against Listeria monocytogenes during storage of carrots at 4 °C. Minicarrots were inoculated with L. monocytogenes at a final concentration of approximately 7 log CFU/g. Inoculated samples were coated by nisin at final concentration of 103 International Unit (IU)/mL or individual mountain savory EO or carvacrol at final concentration of 0.35%, w/w) or nisin plus EO. The samples were then irradiated at 0, 0.5, and 1.0 kGy. The treated samples were kept at 4 °C and microbial analysis of samples were conducted at days 1, 3, 6, and 9. The results showed that coating carrots by carvacrol plus nisin or mountain savory plus nisin and then irradiating coated carrots at 1 kGy could reduce L. monocytogenes by more than 3 log at day 1 and reduced it to undetectable level from day 6. Thus, the combined treatments using nisin plus carvacrol or nisin plus mountain savory and irradiation at 1.0 kGy could be used as an effective method for controlling L. monocytogenes in minicarrots.  相似文献   

9.
As people shift their attention away from unhealthy foods, healthy fresh produce has become popular. However, fresh produce has contributed to many outbreaks of Listeria monocytogenes, which can form a mature biofilm within 24 h. Recent control strategies have proved ineffective in ensuring safe food production. This study focuses on L. monocytogenes biofilms formed on lettuces and cabbages using a viable plate count method and field emission electron microscopy. We investigated the reduction efficacy of treatment with 200 parts per million (ppm) chlorine, 2% each of citric, lactic, and malic acids, 32 Hz ultrasonication (US), 390 mJ/cm2 ultraviolet-C (UV-C), or 750 mJ/cm2 cold oxygen plasma (COP) on L. monocytogenes biofilms. Following treatment, the quality of the vegetables was analyzed with standard procedures. UV-C and COP showed the best CFU reduction, regardless of the nature of the vegetable surface, while US failed to produce any significant reduction (P > 0.05). Furthermore, chemical treatments reduced count by < 1 log colony forming unit (CFU)/cm2 on lettuces, whereas a > 2 log reduction was observed on cabbages. The effect of chemical treatment largely depended on the particular vegetable, while UV-C and COP achieved high reduction regardless of the vegetable, and had no effect on quality. We, therefore, speculate that UV-C and COP show promise in overcoming L. monocytogenes biofilms on food produce.  相似文献   

10.
Listeria monocytogenes is the etiologic agent of listeriosis responsible for severe and fatal infections in humans. Listeria contamination occurs quite often in a wide range of foods due to its ubiquitous nature. Isolates need to be characterized to a strain level for accurate diagnosis of Listeria infection, epidemiological studies, investigation of outbreaks and effective prevention and control of food-borne listeriosis. The purpose of this research was to evaluate the multiple-locus variable number of tandem repeat analysis (MLVA) for sub-typing L. monocytogenes isolates in pure cultures and in food matrices. Two multiplex PCR assays were formulated to amplify six specific loci using fluorescently-labeled primers; and the amplicons were analyzed by capillary electrophoresis. The MLVA method resulted in 34 unique DNA fingerprint patterns from 46 L. monocytogenes isolates of 10 serotypes which had 29 or 30 PFGE patterns with a single restriction enzyme and 34 AFLP patterns. The MLVA patterns of the 46 isolates remained unchanged in the presence of pre-enriched food matrices including sausage, ham, chicken, milk and lettuce. The MLVA method successfully typed L. monocytogenes strains spiked in cheese, roast beef, egg salad and vegetable samples after 48 h enrichment at the initial inoculation levels of 1-5 CFU per 25 g of food or higher. The limits of detection (typing) of the MLVA method were 103-104 CFU/mL of pre-enriched food broth when evaluated using post-spiked sausage, ham, chicken, milk and lettuce samples. The MLVA method was simple, highly discriminatory, and easy to perform with portable (numerical) results. To our knowledge, this is the first report that describes the application of the MLVA method directly to food samples and demonstrates the possibility to obtain rapid and accurate subtyping results before an isolate is obtained.  相似文献   

11.
This study investigated the performance of a 222 nm far-UV-C krypton-chloride excilamp for inactivation of major foodborne pathogenic and spoilage bacteria in thin liquid films (TLF, 1.2 mm thickness), on solid stainless steel surfaces (SS), and against biofilm formation on SS. Both gram-positives (Listeria monocytogenes, Staphylococcus aureus) and gram-negatives (Escherichia coli O157:H7, Pseudomonas aeruginosa) (109 CFU/mL starting concentration) were exposed to 222 nm light at cumulative doses of up to 354 mJ/cm2. Significant (P < 0.05) reductions (1.4–5.1 log CFU) were found for all bacteria, and inactivation kinetics was described well by the Weibull model (0.77  R2  0.95). Substrate type (i.e., TLF vs. SS) substantially impacted treatment efficacy. No detectable resistance of L. monocytogenes was developed after repeated exposure to 222 nm in TLF. The 222 nm treatment also effectively minimized biofilm formation and growth by S. aureus and P. aeruginosa and increased the surviving cells' susceptibility to sodium hypochlorite by at least 2 fold.Industrial relevanceThis work demonstrates that 222 nm krypton-chloride excilamps can be used to effectively inactivate planktonic bacteria and inhibit biofilm formation and growth. This recommends them for use as novel nonthermal light-based systems for mitigation of pathogens and biofilms in a range of applications, including food processing, food service, and clinical environments.  相似文献   

12.
The main goal of this investigation was to study the efficacy of X-ray doses (0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 1.5 and 2.0 kGy) on inoculated Escherichia coli O157: H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri on shredded iceberg lettuce. The second goal was to study the effect of X-ray on the inherent microflora counts and visual color of shredded iceberg lettuce during storage at 4 °C for 30 days. Treatment with 1.0 kGy X-ray significantly reduced the population of E. coli O157: H7, L. monocytogenes, Salmonella enterica and S. flexneri on shredded iceberg lettuce by 4.4, 4.1, 4.8 and 4.4-log CFU 5 cm−2, respectively. Furthermore, more than a 5 log CFU reduction of E. coli O157: H7, L. monocytogenes, S. enterica and S. flexneri was achieved with 2.0 kGy X-ray. Treatment with X-ray reduced the initial microflora on iceberg lettuce and kept them significantly (p < 0.05) lower than the control during storage at 4 °C and 90% RH for 30 days. Treatment with X-ray did not significantly (p > 0.05) change the green color of iceberg lettuce leaves. Treatment with X-ray significantly reduced selected pathogens and inherent microorganisms on shredded iceberg lettuce leaves, which could be a good alternative to other technologies for produce (lettuce) industry.  相似文献   

13.
This study was designed to evaluate the morphological and physiological characteristics of high pressure (HP)-treated Listeria monocytogenes treated at different pHs. L. monocytogenes in phosphate buffered saline (PBS, pH 7.2) adjusted with HCl or lactic acid to pH 4.0, 5.0, and 6.0 was subjected to 300 MPa for 5 min. The numbers of HP-treated L. monocytogenes at pH 4.0 adjusted with HCl or lactic acid were reduced by more than 6 log CFU/mL, while the numbers of non-HP-treated L. monocytogenes were not significantly reduced at pH 4.0. The propidium iodide (PI) fluorescence intensity of HP-treated cells adjusted with lactic acid was increased from 65 (pH 6.0) to 78% (pH 4.0). The HP-induced inactivation of L. monocytogenes in low pH was not directly associated with the membrane disruption. The results provide valuable information for understanding the HP-induced inactivation mechanisms and enhancing microbial lethality in acidic food systems.  相似文献   

14.
The aim of this work was to study the photocatalytic activity of titanium dioxide (TiO2) against Listeria monocytogenes bacterial biofilm. Different TiO2 nanostructured thin films were deposited on surfaces such as stainless steel and glass using the doctor-blade technique. All the surfaces were placed in test tubes containing Brain Heart (BH) broth and inoculated with L. monocytogenes. Test tubes were then incubated for 10 days at 16 °C in order to allow biofilm development. After biofilm formation, the surfaces were illuminated by ultraviolet A light (UVA; wavelength of 315-400 nm). The quantification of biofilms was performed using the bead vortexing method, followed by agar plating and/or by conductance measurements (via the metabolic activity of biofilm cells). The presence of the TiO2 nanoparticles resulted in a fastest log-reduction of bacterial biofilm compared to the control test. The biofilm of L. monocytogenes for the glass nanoparticle 1 (glass surface modified by 16% w/v TiO2) was found to have decreased by 3 log CFU/cm2 after 90 min irradiation by UVA. The use of TiO2 nanostructured photocatalysts as alternative means of disinfecting contaminated surfaces presents an intriguing case, which by further development may provide potent disinfecting solutions. Surface modification using nanostructured titania and UV irradiation is an innovative combination to enhance food safety and economizing time and money.  相似文献   

15.
Bactivory by protozoa is a major factor that limits the number of bacteria in nature and may control the presence of Listeria monocytogenes. The effectiveness of Tetrahymena pyriformis destruction of L. monocytogenes was measured. Within 1 hr, 35–40 T. pyriformis cells ingested an average of 1,219 CFU of L. monocytogenes. Gentamicin was then added to kill un-ingested Listeria. In 24 hr, the recoverable bacteria were reduced at an exponential rate to undetectable levels (<1 per culture). A genetically diverse set of L. monocytogenes cultures all reduced Listeria recovery by the same degree. In assays without addition of gentamicin, numbers of attached L. monocytogenes cells were lessened from an average of log 6.5 CFU/2 ml culture to log 4.7 CFU/2 ml culture. T. pyriformis was capable of lowering numbers of both free-swimming and attached L. monocytogenes. This technology may have applications to control L. monocytogenes in food processing environments.  相似文献   

16.
Induction of viable but non-culturable (VBNC) state in Listeria monocytogenes by Origanum vulgare L. (OVEO) and Rosmarinus officinalis L. essential oils (ROEO) in a meat-based broth and phosphate-buffered saline was investigated. Occurrence of culturability loss on brain-heart infusion agar in L. monocytogenes cells (approximately 7 log CFU/mL) exposed to OVEO (5 and 2.5 μL/mL) or ROEO (10 and 5 μL/mL) individually in meat broth and phosphate-buffered saline, and their ability to restore culturability during a recovery treatment in phosphate-buffered saline + glucose (6 or 24 h, 30 °C) was evaluated. Viability of cells exposed to OVEO and ROEO was investigated with measurements of damage on integrity and membrane potential and enzymatic, efflux pump and respiratory activities. L. monocytogenes lost culturability after a 60 or 180 min-exposure to OVEO (5 and 2.5 μL/mL) or ROEO (10 and 5 μL/mL) in phosphate-buffered saline and meat broth. Cells exposed to ROEO in meat broth (5 and 10 μL/mL) and phosphate-buffered saline (5 μL/mL) restored culturability after 24 h of recovery treatment. Cells with lost culturability had variable subpopulation sizes (10.8–98.5%) with damage on measured physiological functions. Cells with lost culturability induced by OVEO or ROEO had improvements in physiological functions during recovery treatment, being indicative of viability. These results indicate that OVEO and ROEO could cause VBNC state in L. monocytogenes.  相似文献   

17.
《Journal of dairy science》2021,104(10):10594-10608
Listeria monocytogenes is a ubiquitous pathogen that can cause morbidity and mortality in immunocompromised individuals. Growth of L. monocytogenes is possible at refrigeration temperatures due to its psychrotrophic nature. The use of antimicrobials in dairy products is a potential way to control L. monocytogenes growth in processes with no thermal kill step, thereby enhancing the safety of such products. Microbial-based enzymes offer a clean-label approach for control of L. monocytogenes outgrowth. Lactose oxidase (LO) is a microbial-derived enzyme with antimicrobial properties. It oxidizes lactose into lactobionic acid and reduces oxygen, generating H2O2. This study investigated the effects of LO in UHT skim milk using different L. monocytogenes contamination scenarios. These LO treatments were then applied to raw milk with various modifications; higher levels of LO as well as supplementation with thiocyanate were added to activate the lactoperoxidase system, a natural antimicrobial system present in milk. In UHT skim milk, concentrations of 0.0060, 0.012, and 0.12 g/L LO each reduced L. monocytogenes counts to below the limit of detection between 14 and 21 d of refrigerated storage, dependent on the concentration of LO. In the 48-h trials in UHT skim milk, LO treatments were effective in a concentration-dependent fashion. The highest concentration of LO in the 21-d trials, 0.12 g/L, did not show great inhibition over 48 h, so concentrations were increased for these experiments. In the lower inoculum, after 48 h, a 12 g/L LO treatment reached levels of 1.7 log cfu/mL, a reduction of 1.3 log cfu/mL from the initial inoculum, whereas the control grew out to approximately 4 log cfu/mL, an increase of 1 log cfu/mL from the inoculum on d 0. When a higher challenge inoculum of 5 log cfu/mL was used, the 0.12 g/L and 1.2 g/L treatments reduced the levels by 0.2 to 0.3 log cfu/mL below the initial inoculum and the 12 g/L treatment by >1 log cfu/mL below the initial inoculum by hour 48 of storage at refrigeration temperatures. After the efficacy of LO was determined in UHT skim milk, LO treatments were applied to raw milk. Concentrations of LO were increased, and the addition of thiocyanate was investigated to supplement the effect of the lactoperoxidase system against L. monocytogenes. When raw milk was inoculated with 2 log cfu/mL, 1.2 g/L LO alone and combined with sodium thiocyanate reduced ~0.8 log cfu/mL from the initial inoculum on d 7 of storage, whereas the control grew out to >1 log cfu/mL from the initial inoculum. Furthermore, in the higher inoculum, 1.2 g/L LO combined with sodium thiocyanate reduced L. monocytogenes counts from the initial inoculum by >1 log cfu/mL, whereas the control grew out 2 log cfu/mL from the initial inoculum. Results from this study suggest that LO is inhibitory against L. monocytogenes in UHT skim milk and in raw milk. Therefore, LO may be an effective treatment to prevent L. monocytogenes outgrowth, increase the safety of raw milk, and be used as an effective agent to prevent L. monocytogenes proliferation in fresh cheese and other dairy products. This enzymatic approach is a novel application to control the foodborne pathogen L. monocytogenes in dairy products.  相似文献   

18.
We developed a rapid and reliable technique for simultaneous detection of Salmonella Typhimurium, Escherichia coli O157:H7 and Listeria monocytogenes that can be used in food products. Magnetic nano-beads (MNBs) based immunomagnetic separation (IMS) was used to separate the target bacterial cells while multiplex PCR (mPCR) was used to amplify the target genes. To detect only the viable bacteria, propidium monoazide (PMA) was applied to selectively suppress the DNA detection from dead cells. The results showed the detection limit of IMS-PMA-mPCR assay was about 102 CFU/ml (1.2 × 102 CFU/ml for S. Typhimurium, 4.0 × 102 CFU/ml for E. coli O157:H7 and 5.4 × 102 CFU/ml for Lmonocytogenes) in pure culture and 103 CFU/g (5.1 × 103 CFU/g for S. Typhimurium, 7.5 × 103 CFU/g for E. coli O157:H7 and 8.4 × 103 CFU/g for L. monocytogenes) in spiking food products samples (lettuce, tomato and ground beef). This report has demonstrated for the first time, the effective use of rapid and reliable IMS combined with PMA treatment and mPCR assay for simultaneous detection of viable S. Typhimurium, E. coli O157:H7 and L. monocytogenes in spiked food samples. It is anticipated that the present approach will be applicable to simultaneous detection of the three target microorganisms for practical use.  相似文献   

19.
The objective of this study was to determine the efficacy of neutral pH electrolyzed (NEO) water (155 mg/L free chlorine, pH 7.5) in reducing Escherichia coli O157:H7 and Salmonella Typhimurium DT 104 on romaine lettuce, iceberg lettuce, and tomatoes washed in an automated produce washer for different times and washing speeds. Tomatoes and lettuce leaves were spot inoculated with 100 μL of a 5 strain cocktail mixture of either pathogen and washed with 10 or 8 L of NEO water, respectively. Washing lettuce for 30 min at 65 rpm led to the greatest reductions, with 4.2 and 5.9 log CFU/g reductions achieved for E. coli O157:H7 and S. Typhimurium respectively on romaine, whereas iceberg lettuce reductions were 3.2 and 4.6 log CFU/g for E. coli O157:H7 and S. Typhimurium respectively. Washing tomatoes for 10 min at 65 rpm achieved reductions greater than 8 and 6 log CFU/tomato on S. Typhimurium and E. coli O157:H7 respectively. All pathogens were completely inactivated in NEO water wash solutions. No detrimental effects on the visual quality of the produce studied were observed under all treatment conditions. Results show the adoption of this washing procedure in food service operations could be useful in ensuring produce safety.  相似文献   

20.
Salmonella internalization is an important issue in raw vegetable consumption because washing usually cannot remove or inactivate the internalized pathogens effectively. In this study, the impact of extreme weather events, drought and heavy rains, caused by climate change on the internalization of Salmonella Typhimurium was investigated. Two leafy green fresh produce, iceberg lettuce and green onion were chosen. Rhizosphere soil inoculation was conducted to mimic the contamination routes via soil and then root uptake. Most internalized S. Typhimurium were found in lettuce leaves and in the root portions of green onion under all three irrigation conditions (optimal, drought, storm). In general, high concentration of soil inoculation facilitated the internalization level in both lettuce and green onion. Under extreme weather conditions, the internalization of S. Typhimurium in lettuce occurred when the soil was contaminated with a high level of bacteria (8–9 log colony forming unit (CFU)/g soil) and under these conditions, the internalization level was higher than the lettuce grown at the optimal water condition, except with 8 log CFU/g contamination (storm). Under drought, the results showed high variation, but the level of internalization of S. Typhimurium in lettuce increased by 16 times (1.21 log CFU/g) and 27 times (1.43 log CFU/g) compared to the optimally irrigated group when the soil was contaminated with 8 log and 9 log CFU/g soil, respectively. Ten-fold increased internalization was observed in the over-irrigated lettuce leaves when the soil was contaminated with 9 log CFU/g soil. The green onion samples showed ~ 4 log CFU/g green onion of S. Typhimurium internalization when exposed to high level of contamination (> 7 log CFU/g soil), which is a much higher internalization rate than the lettuce (average 2–3 log CFU/g). However, from the green onion experiments, no apparent patterns of water stress that affect on the levels on the Salmonella internalization were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号