共查询到20条相似文献,搜索用时 15 毫秒
1.
针对采用传统方法测量口服生物利用度(OB)代价昂贵、花费周期长,而现有的一些机器学习方法对其预测精度较低的问题,提出了一种基于栈式自编码(SAE)神经网络的口服生物利用度分类方法,利用经筛选过的分子特征结合栈式自编码模型对生物利用度进行分类。实验表明,与浅层机器学习模型支持向量机(SVM)以及人工神经网络(ANN)相比,深度网络对化合物分子的特征有更本质的学习,采用经筛选过的2D和3D分子特征组合对人体口服生物利用度的分类效果较好,其平均预测精度为83%,灵敏度(SE)为94%,特异性(SP)为49%。 相似文献
2.
Coke dry quenching (CDQ) is widely adopted for waste heat recovery in iron and steel plants. In this work, an economic benefit index was introduced to evaluate the performance of the CDQ system and stacked autoencoder (SAE) based deep neural networks are adopted for CDQ operation prediction. Based on the prediction results, a guidance is provided for online adjustment of the supplementary air flow rate, hence the efficiency and safety of the CDQ system can be improved. The case study on a real plant shows that the proposed method increases the economic efficiency of the CDQ process by 4.39%. 相似文献
3.
针对遥感图像中高光谱数据的分类问题,提出一种基于堆叠稀疏自动编码器(SSAE)深度学习特征表示的高光谱遥感图像分类方法。首先,将光谱数据样本进行预处理和归一化。然后,将其输入到SSAE中进行特征表示学习,并通过网格搜索来获得最优网络参数,以此获得有效的特征表示。最后通过支持向量机(SVM)分类器对输入图像特征进行分类,最终实现遥感图像中像素的分类。在两个标准数据集上的实验结果表明,该方法能够实现准确的高光谱地物分类。 相似文献
4.
Soft sensors have been widely used in industrial processes over the past two decades because they use easy-to-measure process variables to predict difficult-to-measure ones. Some success has been achieved by the dominant traditional methods of modeling soft sensors based on statistics, such as principal components analysis (PCA) and partial least square (PLS), but such sensors usually become inaccurate and inefficient when processing strong nonlinear data. In this paper, a new soft sensor modeling approach is proposed based on a deep learning network. First, stacked auto-encoders (SAEs) are employed to extract high-level feature representations of the input data. In the process of training each layer of a SAE, the Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) is adopted to optimize the weights parameters. Then, a support vector regression (SVR) is added to predict the target value on the basis of the features obtained from the SAE. To improve the model performance, Genetic Algorithm (GA) is used to obtain the optimal parameters of the SVR. To evaluate the proposed method, a soft sensor model for estimating the rotor deformation of air preheaters in a thermal power plant boiler is studied. The experimental results demonstrate that the soft sensor based on the SAE-SVR algorithm is more effective than the existing methods are. 相似文献
5.
目前医用胶囊生产过程中的缺陷检测主要由人工完成,费时费力,容易受主观因素的影响。提出一种基于堆叠降噪自动编码器的胶囊表面缺陷检测方法,该方法首先建立深度自动编码器网络,并根据缺陷样本进行降噪训练,获取网络的初始权值;然后通过BP算法进行微调,得到训练样本到无缺陷模板之间的映射关系;最后利用重构图像与缺陷图像之间的对比关系,实现测试样本的缺陷检测。实验表明,堆叠降噪自动编码器较好地建立了上述映射关系,能快速、准确地进行缺陷检测,对噪声具有很强的鲁棒性和稳定性。 相似文献
6.
7.
8.
9.
无人机自动化巡检是解决大型分布式光伏系统运维需求的有效方案。无人机航拍产生大量光伏板图像数据,需要算法实现更高的识别精度和更快的识别速度,为此提出一种改进的SSD算法,用于检测光伏组件缺陷。新算法在原有SSD算法中嵌入注意力机制,并使用迁移学习策略提高检测速度和准确率,能够对光伏组件普遍存在的玻璃破碎、受光面发黄、灰尘等进行自动识别和分类。通过与Faster-RCNN、YOLO3、VGG16-SSD算法对比,实验结果表明,改进SSD算法在识别准确率、召回率和检测速度方面表现良好,能有效提升光伏组件缺陷识别的效率。 相似文献
10.
为解决套牌车识别难度大的问题,通过深度学习的技术,基于ResNet-50,结合通道注意力机制和位置注意力机制,设计了一种三维注意力机制对近似车辆进行精确识别;解决了当前大部分注意力算法都关注于一维的通道注意力和二维的位置注意力,而处理的图像数据是三维的,不能将注意力集中在所有需要关注的区域,造成部分关键信息遗失的问题;该三维注意力机制在多种视觉任务下均有很好的效果,在Cifar100数据集上,相比SENet有1.12%的提升,在PKU VehicleID数据集上,相比SENet平均有2%的提升。 相似文献
11.
孔佳琳;张琪;卫建泽;李琦 《计算机科学》2025,52(4):185-193
虹膜中的微结构具有较高的个体区分度,使得虹膜识别成为实现身份验证的理想选择。除了微结构本身的特征外,其间的关联性也是用于身份验证的有效判别线索。针对虹膜微结构之间的关联性,提出了一种基于虹膜纹理感知的自适应关联学习方法,该方法在关联测度模型的双分支结构基础上进行改进,融入了通道注意力和高效多尺度注意力机制来自适应地动态调整特征图,从不同细节层次的分布中捕捉特征,提高了对虹膜微结构的敏感度。为了深入挖掘来自全局和局部特征之间的关联作用,利用注意力机制对双分支网络提取到的特征进行自适应加权融合,这种加权方式可以根据输入的重要性或相关性灵活地分配不同的权重以学习最优特征关联。实验结果表明,自适应关联学习方法在虹膜识别任务中的表现出色,在多项评价指标上优于现有基线方法,具有更高的识别精度和更强的泛化能力。 相似文献
12.
13.
基于深度学习的特征抽取是目前数据降维问题的研究热点,堆叠自编码器作为一种较为常用的模型,无法对混有噪声及较稀疏的数据进行良好的特征表达。面向微博情感分析,通过在堆叠降噪自编码器的各隐藏层中加入稀疏因子,来解决样本数据所含噪声和稀疏性对特征抽取的影响。使用COAE评测数据集进行的情感分析实验表明所提模型分类的准确率和召回率都有所提高。 相似文献
14.
元宇宙是三维的沉浸式互联空间。随着虚拟现实、人工智能等技术的发展,元宇宙正在重塑人类的生活方式。三维重建是元宇宙的核心技术之一,其中,基于深度学习的三维重建是计算机视觉领域的研究热点。针对手绘草图难以避免的前景和背景模糊性、绘制风格差异性和视角偏差问题,提出了基于注意力机制与对比损失的单视图草图三维重建方法,重建过程中无需额外的标注信息和交互操作。该模型首先通过空间变换模块矫正输入草图的空间位置,随后使用基于归一化的注意力模块在草图上建立长距离和多层次的依赖关系,利用草图的全局结构信息缓解前景和背景的模糊性所带来的重建困难,并设计对比损失函数使模型学习到对草图风格和视角不变的潜空间特征,提升模型对输入草图的鲁棒性。在多个数据集上的实验结果证明了所提模型的有效性和先进性。 相似文献
15.
推荐系统在电子商务的发展中发挥着越来越重要的作用,但用户对物品评分数据的稀疏性往往是推荐精度较低的重要原因。目前通常采用推荐技术对辅助信息进行处理,以缓解用户评价的稀疏性,并提高预测评分精度。 通过相关模型 ,可以利用文本数据来提取物品的隐藏特征。最近,深度学习算法快速发展, 因此文中选用了一种具有强大特征提取能力的新型深度网络架构——变分自编码器(Variational AutoEncoder,VAE) 。通过将无监督变分自编码融合到概率矩阵分解(Probability Matrix Factorization,PMF)中,构建了一种感知上下文的新型推荐模型——变分矩阵分解(Variational AutoEncoder Matrix Factorization,VAEMF)。首先使用TD-IDF对物品的评价文档进行数据预处理,然后对处理后的数据使用VAE捕获物品的上下文信息特征,最后使用概率矩阵分解进一步提高预测评分精度。在两个真实数据集上的实验结果验证了所提方法相较于自编码算法及概率矩阵分解算法的优势。 相似文献
16.
17.
近年来,变分自编码器(Variational auto-encoder,VAE)模型由于在概率数据描述和特征提取能力等方面的优越性,受到了学术界和工业界的广泛关注,并被引入到工业过程监测、诊断和软测量建模等应用中.然而,传统基于VAE的软测量方法使用高斯分布作为潜在变量的分布,限制了其对复杂工业过程数据,尤其是多模态数据的建模能力.为了解决这一问题,本论文提出了一种混合变分自编码器回归模型(Mixture variational autoencoder regression,MVAER),并将其应用于复杂多模态工业过程的软测量建模.具体来说,该方法采用高斯混合模型来描述VAE的潜在变量分布,通过非线性映射将复杂多模态数据映射到潜在空间,学习各模态下的潜在变量,获取原始数据的有效特征表示.同时,建立潜在特征表示与关键质量变量之间的回归模型,实现软测量应用.通过一个数值例子和一个实际工业案例,对所提模型的性能进行了评估,验证了该模型的有效性和优越性. 相似文献
18.
19.
近年来,随着深度学习(Deep Learning)在机器阅读理解(Machine Reading Comprehension)领域的广泛应用,机器阅读理解迅速发展。针对机器阅读理解中的语义理解和推理,提出一种双线性函数注意力(Attention)双向长短记忆网络(Bi directional-Long Short-Term Memory)模型,较好地完成了在机器阅读理解中抽取文章、问题、问题候选答案的语义并给出了正确答案的任务。将其应用到四六级(CET-4,CET-6)听力文本上测试,测试结果显示,以单词为单位的按序输入比以句子为单位的按序输入准确率高2%左右;此外,在基本的模型之上加入多层注意力转移的推理结构后准确率提升了8%左右。 相似文献
20.
基于位置社交网络(Location-based social network, LBSN)的兴趣点(Point-of-Interest,POI)推荐算法是近年来的研究热点,有效的POI推荐具有极大的经济和社会效益。针对LBSN中的数据稀疏问题、用户细粒度兴趣(即用户的长期和短期兴趣)序列建模问题和联合多种影响因素的POI推荐问题,研究一种结合矩阵分解和带有注意力机制深度学习技术的POI推荐模型(CF-ADNN)。一方面,构造特征矩阵缓解签到数据稀疏问题,通过矩阵分解得到隐藏因子,计算POI的特征向量;另一方面,构建一种带注意力机制的用户细粒度兴趣的序列建模方式,有效学习用户长期和短期的兴趣特征,提高POI推荐精确度;结合上述两种方法,最终得到可以融合多种影响因素的POI推荐模型。并通过对比试验,进一步验证模型的推荐效果。 相似文献