首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An Al-12 Si/Al-3.5 Cu-1.5 Mg-1 Si bimetal with a good interface was successfully produced by selective laser melting(SLM).The SLM bimetal exhibits four successive zones along the building direction:an Al-12 Si zone,an interfacial zone,a texture-strengthening zone and an Al-Cu-Mg-Si zone.The interfacial zone(<0.2 mm thick)displays an increasing size of the cells composed of eutectic Al-Si and a discontinuous cellular microstructure,resulting in the lowest hardness of the four zones.The texturestrengthening zone(around 0.3 mm thick)shows a remarkable variation of the hardness and<001>fiber texture.Electron backscatter diffraction analysis shows that the grains grow gradually from the interfacial zone to the Al-Cu-Mg-Si zone along the building direction.Additionally,a strong<001>fiber texture develops at the Al-Cu-Mg-Si side of the interfacial zone and disappears gradually along the building direction.The bimetal exhibits a room temperature yield strength of 267±10 MPa and an ultimate tensile strength of 369±15 MPa with elongation of 2.6±0.1%,revealing the potential of selective laser melting in manufacturing dissimilar materials.  相似文献   

2.
《材料科学技术学报》2019,35(8):1578-1586
Static coarsening mechanism of selective laser melted (SLMed) Ti–6Al–4V with a lamellar microstructure was established at temperatures from 700 °C to 950 °C. Microstructure evolution revealed that high heat treatment temperature facilitated martensite decomposition and promoted lamellae growth. At each temperature, the growth rate decreased with increasing holding time. The static coarsening behaviour of SLMed Ti–6Al–4V can be interpreted by Lifshitz, Slyozov, and Wagner (LSW) theory. The coarsening coefficient were 0.33, 0.33–0.4, 0.4–0.5 for 700–800 °C, 900 °C and 950 °C, respectively. This indicated the coarsening mechanism was bulk diffusion at 700–800 °C, and a combination of bulk diffusion and interface reaction at 900 °C and 950 °C conditions.  相似文献   

3.
Zn possesses good biodegradability and biocompatibility, but its strength and hardness are insufficient for bone implants. In this study, Ag was introduced into Zn to improve the mechanical properties by selective laser melting. The results showed that Ag was dissolved in Zn, which generated constitutional undercooling in front of the advancing solid/liquid interface during solidification, making more nucleation events occur and thus refining the grains. When Ag content exceeded its solid solubility in Zn, AgZn3 phase is formed, which acted as active nucleation sites for Zn grains, further refining the grains. The refinement of the grains effectively hindered the plastic deformation and dislocation. As a result, the compressive strength and hardness were improved by about 100% and 116%, respectively. When Ag content continued increasing and became excessive, AgZn3 phase grew rapidly, coarsening the grains. Accordingly, the mechanical properties slightly decreased. These results demonstrated that the Zn–Ag alloys are potential implant biomaterials.  相似文献   

4.
    
The influence of selective laser melting (SLM) process parameters (laser power, scan speed, scan spacing, and island size using a Concept Laser M2 system) on the porosity development in AlSi10Mg alloy builds has been investigated, using statistical design of experimental approach, correlated with the energy density model. A two-factor interaction model showed that the laser power, scan speed, and the interaction between the scan speed and scan spacing have the major influence on the porosity development in the builds. By driving the statistical method to minimise the porosity fraction, optimum process parameters were obtained. The optimum build parameters were validated, and subsequently used to build rod-shaped samples to assess the room temperature and high temperature (creep) mechanical properties. The samples produced using SLM showed better strength and elongation properties, compared to die cast Al-alloys of similar composition. Creep results showed better rupture life than cast alloy, with a good agreement with the Larson–Miller literature data for this alloy composition.  相似文献   

5.
In this work,selective laser melting(SLM)process is used to prepare the AlNi6TiZr alloy.By analyzing the printing quality and mechanical properties of the printed specimens with different process parameters,the SLM forming window of AlNi6TiZr is obtained.The relative density of the sample printed with 270 W-1100 mm/s(laser energy density:82 J/mm3)reaches 99.7%,exhibiting excellent mechanical properties(yield strength(YS):421.7 MPa;ultimate tensile strength(UTS):480.4 MPa).After an aging treatment of 325 ℃-12 h,the YS and UTS of the sample increased to 494 MPa and 550.7 MPa,respectively.Adding Ni,Ti,and Zr components promoted the generation of multi-phase precipitates in the Al alloy and improved the synergistic strengthening effect of multi-phases.The hard-shell structure(HSS)formed by the Al3Ni phase at the grain boundary significantly strengthened the grain boundary strength.The precipitated Al3(Ti,Zr)phases at the grain boundaries prevent grain growth and dislocation movement.The Al3Ni and Al3(Ti,Zr)phases have good thermal stability that can still maintain excellent enhancement effects at high temperature.AlNi6TiZr alloy has great application prospects in medium and high-temperature environments.  相似文献   

6.
A series of Al–7Si–(0–5)Zn alloys were produced by permanent mould casting and their microstructure, mechanical and tribological properties were investigated in as-cast state. The microstructure of Al–7Si alloy consisted of α-Al dendrites surrounded by eutectic Al–Si mixture and a small amount of primary silicon particles. Addition of zinc into Al–7Si alloy resulted in the formation of α-solid solution and an increase in size and volume fraction of primary silicon particles. Moreover, these particles gathered inside interdendritic regions of the ternary Al–7Si–Zn alloys. The density, strength and hardness of Al–7Si–Zn alloys increased continuously with increasing zinc content, but their elongation to fracture and impact energy showed a reverse trend. It was also observed that zinc had no significant effect on the friction coefficient of the alloys, but their wear volume decreased with increasing zinc content up to 4%, above which the trend reversed. The wear surfaces of the alloys were characterized mainly by smearing layer with some degree of oxidation. In addition, delamination and fine scratches were observed on the worn surface. It was concluded that the addition of zinc up to 4% improves both mechanical and wear behaviour of Al–7Si alloy.  相似文献   

7.
The selective laser melting(SLM) of Ti-Ni mixed powder with atomic ratio of 1:1 was performed in the present work in order to elaborate shape memory alloy(SMA).The martensite phase of Ti-Ni alloy can be found by X-ray diffraction(XRD) analysis under temperature field,moreover,the Ti2Ni phase at a high scanning velocity.The crystalline phase images also show that the synthesized Ti-Ni alloy possessed a refined martensite microstructure.In order to evaluate the mechanical properties,the microhardness and porosity were measured.The microhardness is relatively high about 400HV0.2 with champ temperature.Besides,the porosity is quite low due to the excellent laser energy absorptivity and meltability of Ni element.The differential scanning calorimetry(DSC) analysis shows that the transformation temperature from austenite phase to martensite phase is relatively high and stable.  相似文献   

8.
Micro-fine sphericalpowders are recommended for selective laser melting(SLM). However, they are mostly expensive due to the complex manufacturing technique and low yield. In this paper, using lowcost treated hydride-dehydride(HDH) Ti powders, commercial pure Ti(CP-Ti) was successfully fabricated by SLM. After 4-h milling, the resulting powders become near-spherical with no obvious angularity, and have optimal flowability with the apparent density of 1.64 ± 0.02 g/cm~3, tap density of 2.10 ± 0.04 g/cm~3,angle of repose 40.11?±0.09?, and Carr's index of 77.74 ± 0.15. The microstructure was determined with full acicular martensitic β phase. The CP-Ti can achieve superior mechanical properties with the ultimate tensile strength of 876.1 ± 20.5 MPa and elongation of(14.7 ± 0.5)%, which exhibit distinctly competitive compared to the as-cast CP-Ti or Ti-6 Al-4 V. Excellent mechanical properties together with its low-cost make SLM-fabricated CP-Ti from modified HDH Ti powders show promising applications.  相似文献   

9.
The effect of the Al content on the microstructure and mechanical behaviour of Mg–8Li–xAl–0.5Ca alloys is investigated. The experimental results show that an as-cast Mg–8Li–0.5Ca alloy is mainly composed of α-Mg, β-Li and granular Mg2Ca phases. With the addition of Al, the amount of α-Mg phase first increases and then decreases. In addition, the intermetallic compounds also obviously change. The microstructure of the test alloys is refined due to dynamic recrystallisation that occurs during extrusion. The mechanical properties of extruded alloys are much more desirable than the properties of as-cast alloys. The as-extruded Mg–8Li–6Al–0.5Ca alloy exhibits good comprehensive mechanical properties with an ultimate tensile strength of 251.2?MPa, a yield strength of 220.6?MPa and an elongation of 23.5%.  相似文献   

10.
Effects of added Al–5Ti–B master alloys on precipitation of iron-rich intermetallics and mechanical properties of A356 cast alloys with high Fe content (1.5?wt-%) were investigated using image analysis, scanning electron microscopy, and tensile testing. Results show that added Al–5Ti–B has apparent refinement on α (Al) grain size of A356 alloys that have high Fe content. 12?wt-% Al–5Ti–B is beneficial for improving mechanical properties of A356 cast alloys with high Fe content. Improved mechanical properties can be attributed to refined microstructure, the proper amounts of TiB2 and Ti(AlSi)3, and decreased porosity. An excessive amount of Al–5Ti–B deteriorates mechanical properties of alloys because it leads to the formation of large secondary intermetallics and increased porosity.  相似文献   

11.
    
In this article, the microstructure and mechanical properties of Mg–8Al–1Sm–1Zn alloy prepared by multi-pass conventional rolling and single-pass liner rolling are investigated. The alloy is subjected to multi-pass conventional rolling with a cumulative deformation of 60% and single-pass liner rolling with a deformation of 60% after solution-treated (T4 temper) at 400 °C, respectively. In the results, it is shown that the best mechanical properties are obtained by single-pass liner rolling at 400 °C with a deformation of 60% deformation under the combined effect of grain refinement and precipitation strengthening. The average grain size of the alloy is 7.2 μm and the microhardness is 80 HV. The tensile yield strength, ultimate tensile strength, and elongation at room temperature are 255 MPa, 285 MPa, and 12.7%, which are 14.9%, 15.3%, and 10.4% higher than those of the conventional multi-pass rolled alloy, respectively.  相似文献   

12.
13.
为改善激光熔化沉积TC31高温钛合金力学性能,本文通过光学显微镜、SEM、TEM和力学性能测试的方法研究了退火温度对合金中组织演化行为的影响,及其与合金室温和650℃高温力学性能的关系。结果表明:组织中初生α相含量随着退火温度升高而降低,其溶解主要发生在950℃以上,980℃退火后含量仅为29%。当退火温度超过930℃时,初生α相片层宽度明显增加。随着退火温度升高,α/β界面处析出的(Ti, Zr)6Si3相尺寸增加,且进入α相片层内部。合金在800~1 000℃退火时,合金室温拉伸屈服强度随退火温度升高趋于降低。受相界面析出的硅化物聚合长大及α相片层尺寸增加等因素影响,合金高温屈服强度随退火温度升高先降低后增加。合金经过1 000℃退火后,呈现良好的高温性能,其650℃下抗拉强度达657 MPa、屈服强度约为466 MPa、延伸率27%。  相似文献   

14.
Laser powder bed fusion (LPBF) of high-strength Al–Mg–Sc–Zr alloy possesses great potential application in the aerospace industry. However, fatigue performance has become a very important issue in the safety and durability design of engineering structures. Herein, the high cycle fatigue property of LPBF-fabricated Al–Mg–Sc–Zr alloy and its correlation with defects, microstructure, and precipitated phases are studied. The LPBF-manufactured Al–Mg–Sc–Zr alloy appears heterogeneous structure composed of equiaxed grains at the molten pool boundary and columnar grains at the inner of the molten pool. After aging treatment (325 °C/4 h), the nanosized Al3Sc intragranular particles and Mn-rich intergranular particles are precipitated, leading to more difficult movement of dislocations that favors the fatigue strength. The ultimate tensile strength of the samples after aging treatment is 507.05 MPa and corresponding 107 cycle fatigue strength (R = −1) is 106 MPa. The fracture morphology of the fatigue specimens shows that the fatigue cracks start from the surface defects with strong stress concentration, especially the lack of fusions, and then expand through the surplus part.  相似文献   

15.
It is well accepted that grain-boundary phases in metallic alloys greatly deteriorate the mechanical properties.In our work,we report on a novel strategy to prepare high strength-ductility β-type(Ti69.71 Nb23.72Zr4.83Ta1.74)97Si3(at.%)(TNZTS) alloys by tailoring grain-boundary metastable Si-containing phase.Specifically,the thin shell-shaped metastable S1 phase surrounding the columnar β-Ti grain was intercepted successfully via nonequilibrium rapid solidification achieved by selective laser melting(SLM).Subsequently,the thin shell-shaped metastable(Ti,Nb,Zr)5 Si3(called S1) phase was transformed into globular(Ti,Nb,Zr)2 Si(called S2) phase by the solution heat treatment.Interestingly,the globular S2 phases reinforced TNZTS alloy exhibits ultrahigh yield strength of 978 MPa,ultimate strength of 1010 MPa and large elongation of 10.4 %,overcoming the strength-ductility trade-off of TNZTS alloys by various methods.Especially,the reported yield strength herein is 55 % higher than that of conventionally forged TNZT alloys.Dynamic analysis indicates the globularization process of the metastable S1 phase is controlled by the model of termination migration.The quantitative analysis on strengthening mechanism demonstrates that the increase in yield strength of the heat-treated alloys is mainly ascribed to the strengthening of the precipitated silicide and the dislocations induced by high cooling rate.The obtained results provide some basis guidelines for designing and fabricating β-titanium alloys with excellent mechanical properties,and pave the way for biomedical application of TNZTS alloy by SLM.  相似文献   

16.
目的 提高激光熔化沉积铝合金的成形质量。方法 以颗粒度45~105 μm的AlSi10Mg粉末为材料,4045铝合金为基板,利用激光熔化沉积设备在充氩舱内进行铝合金成形试验。测试试样的硬度和拉伸性能,并通过扫描电子显微镜和光学显微镜进行显微组织形貌分析。结果 在沉积方向上,试样显微组织呈现周期性条带状纹路,搭接区域呈现出比较明显的弧形特征;含有大量的细密树枝晶。该合金相成分主要包括:Al相、共晶Si相及少量的Mg2Si强化相。沿扫描方向,试样平均硬度值约为130HV;沿沉积方向,试样平均硬度值约为100HV;沉积态试样的屈服强度约为185.75 MPa,伸长率约为15.21%;沉积态试样拉伸性能明显优于压铸试样;该铝合金的失效形式为韧性断裂。结论 AlSi10Mg在激光熔化沉积时具有良好的成形能力,沉积态的组织强度高于铸态组织强度。  相似文献   

17.
目的 研究工艺参数对18Ni300马氏体时效钢激光选区熔化成形质量的影响。方法 采用正交试验方法研究激光功率和扫描速度对18Ni300相对致密度、硬度的影响,得到铺层层厚0.03 mm、扫描间距0.1 mm时为18Ni300最佳工艺参数,并对最佳工艺参数成形的试样进行组织及力学性能表征。结果 激光功率为230 W、扫描速度为1100 mm/s时,试样硬度为44.7HRC,相对致密度为99.98%,相对最优;材料鱼鳞状组织均匀致密,气孔较少,部分柱状晶沿熔池边界呈外延生长,熔池边界细小晶粒取向基本随机,熔池内部分粗大柱状晶有一定的择优性。结论 最优参数情况下SLM成形的18Ni300主要由体积分数为99.8%的马氏体和0.2%的残余奥氏体组成;试样的力学性能有明显的各向异性,拉伸断口有明显的颈缩,断裂形式为韧性断裂,纤维区可以看到明显的等轴大韧窝、孔洞,并伴有明显的撕裂特征。  相似文献   

18.
    
Magnesium and its alloys offer huge potential for lightweight applications. However, many Mg alloys suffer from limited room-temperature formability. It has previously been shown that the addition of aluminium and calcium to Mg can improve ductility. Therefore, in the present work, it is aimed to systematically vary the alloying content of Al and Ca and to study their effects on the slip system activity and crystallographic texture after rolling and recrystallization. In the results, it is shown that all investigated ternary alloys in the range of 1–2 wt% Al and 0.005–0.5 wt% Ca have an increased ductility (in the range of 10–17% increase compared to pure Mg), whereas the binary Mg–Al and Mg–Ca alloys suffer from limited ductility (10% tensile elongation) and strength (175 MPa ultimate tensile strength). Non-basal and especially <c + a>-slip is active in all compositions (in 15–33% of the grains examined). Basal-type textures are observed for all compositions, but with significantly weaker basal peak intensities for Ca-containing samples when compared to pure Mg. The combination of activation of the <c + a> slip system and texture weakening is discussed as being responsible for the improved ductility of the ternary Mg–Al–Ca alloys.  相似文献   

19.
20.
钪在铝及铝合金中的作用   总被引:16,自引:3,他引:16  
总结了Sc在铝及铝合金中对合金组织、力学性能、热稳定性、焊接性能和抗腐蚀,性能的影响。Sc在铝合金中是有效的晶粒细化剂、再结晶抑制剂和改善焊接性能的添加剂;Sc可以细化铝合盒晶粒,提高合盒的力学性能和再结晶温度,增强铝合金的热稳定性,改善铝合盒的焊接性能和抗腐蚀性能;分析了Sc在铝合盒中的作用机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号