首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flexible aqueous zinc batteries are promising candidates as safe power sources for fast-growing portable and wearable electronics. However, the low working voltage, poor rate capability, and cycling stability have greatly restricted their development and applications. Here, a new family of flexible bimetallic phosphide/carbon nanotube hybrid fiber electrodes with unique macroscopic microcrack structure and microscopic porous nanoflower structure is reported. The hierarchical microcrack structure not only facilitates the penetration of electrolyte for effective exposure of active sites, but also can serve as buffers to relieve the stress concentrations of the fiber electrode under deformations, enabling impressive electrochemical performance and mechanical flexibility. Particularly, the fabricated flexible aqueous zinc batteries demonstrate high working voltage plateau and specific capacity (≈1.7 V, 258.9 mAh g−1 at 2 A g−1), ultrahigh rate capability (135.8 mAh g−1 at 50 A g−1, fully charged in only 9.8 s) and impressive power density of 79 000 W kg−1. Moreover, the flexible batteries show ultralong cycling life with 74.6% capacity retention after 20 000 cycles. The fiber batteries are also highly flexible and can be easily knitted into soft electronic textiles to power a smartphone, which are particularly promising for the next-generation of flexible and wearable electronics.  相似文献   

2.
The increasing diffusion of portable and wearable technologies results in a growing interest in electronic devices having features such as flexibility, lightness-in-weight, transparency, and wireless operation. Organic electronics is proposed as a potential candidate to fulfill such needs, in particular targeting pervasive radio-frequency (RF) applications. Still, limitations in terms of device performances at RF, particularly severe when large-area and scalable fabrication techniques are employed, have largely precluded the achievement of such an appealing scenario. In this work, the rectification of an electromagnetic wave at 13.56 MHz with a fully inkjet printed polymer diode is demonstrated. The rectifier, a key enabling component of future pervasive wireless systems, is fabricated through scalable large-area methods on plastic. To provide a proof-of-principle demonstration of its future applicability, its adoption in powering a printed integrated polymer circuit is presented. The possibility of harvesting electrical power from RF waves and delivering it to a cheap flexible substrate through a simple printed circuitry paves the way to a plethora of appealing distributed electronic applications.  相似文献   

3.
Wearable electronics offer the combined advantages of both electronics and fabrics. In this article, we report the fabrication of wearable supercapacitors using cotton fabric as an essential component. Carbon nanotubes are conformally coated onto the cotton fibers, leading to a highly electrically conductive interconnecting network. The porous carbon nanotube coating functions as both active material and current collector in the supercapacitor. Aqueous lithium sulfate is used as the electrolyte in the devices, because it presents no safety concerns for human use. The supercapacitor shows high specific capacitance (˜70–80 F·g−1 at 0.1 A·g−1) and cycling stability (negligible decay after 35,000 cycles). The extremely simple design and fabrication process make it applicable for providing power in practical electronic devices.  相似文献   

4.
It is vital to create flexible batteries as power sources to suit the needs of flexible electronic devices because they are widely employed in wearable and portable electronics. The direct methanol fuel cell (DMFC) is a desirable alternative portable energy source since it is a clean, safe, and high energy density cell. The traditional DMFC in mechanical assembly and its unbending property, however, prevent it from being employed in flexible electrical devices. In this study, the flexible membrane electrode assembly (MEA) with superior electrical conductivity and nanoscale TiC-modified carbon cloth (TiC/CC) is used as supporting layer. Additionally, solid methanol fuels used in the manufacturing of flexible all-solid-state DMFC have the advantages of being tiny, light, and having high energy density. Furthermore, the DMFC's placement and bending angle have little effect on its performance, suggesting that DMFC is appropriate for flexible portable energy. The flexible all-solid-state DMFC's power density can reach 14.06 mW cm−2, and after 50 bends at 60°, its voltage loss can be disregarded. The flexible all-solid DMFC has an energy density that is 777.78 Wh Kg−1 higher than flexible lithium-ion batteries, which is advantageous for the commercialization of flexible electronic products.  相似文献   

5.
Supercapacitor fibers, with short charging times, long cycle lifespans, and high power densities, hold promise for powering flexible fabric-based electronics. To date, however, only short lengths of functioning fiber supercapacitors have been produced. The primary goal of this study is to introduce a supercapacitor fiber that addresses the remaining challenges of scalability, flexibility, cladding impermeability, and performance at length. This is achieved through a top-down fabrication method in which a macroscale preform is thermally drawn into a fully functional energy-storage fiber. The preform consists of five components: thermally reversible porous electrode and electrolyte gels; conductive polymer and copper microwire current collectors; and an encapsulating hermetic cladding. This process produces 100 m of continuous functional supercapacitor fiber, orders of magnitude longer than any previously reported. In addition to flexibility (5 mm radius of curvature), moisture resistance (100 washing cycles), and strength (68 MPa), these fibers have an energy density of 306 μWh cm−2 at 3.0 V and ≈100% capacitance retention over 13 000 cycles at 1.6 V. To demonstrate the utility of this fiber, it is machine-woven and used as filament for 3D printing.  相似文献   

6.
Currently, the main bottleneck for the widespread application of Ni–Zn batteries is their poor cycling stability as a result of the irreversibility of the Ni‐based cathode and dendrite formation of the Zn anode during the charging–discharging processes. Herein, a highly rechargeable, flexible, fiber‐shaped Ni–Zn battery with impressive electrochemical performance is rationally demonstrated by employing Ni–NiO heterostructured nanosheets as the cathode. Benefiting from the improved conductivity and enhanced electroactivity of the Ni–NiO heterojunction nanosheet cathode, the as‐fabricated fiber‐shaped Ni–NiO//Zn battery displays high capacity and admirable rate capability. More importantly, this Ni–NiO//Zn battery shows unprecedented cyclic durability both in aqueous (96.6% capacity retention after 10 000 cycles) and polymer (almost no capacity attenuation after 10 000 cycles at 22.2 A g?1) electrolytes. Moreover, a peak energy density of 6.6 µWh cm?2, together with a remarkable power density of 20.2 mW cm?2, is achieved by the flexible quasi‐solid‐state fiber‐shaped Ni–NiO//Zn battery, outperforming most reported fiber‐shaped energy‐storage devices. Such a novel concept of a fiber‐shaped Ni–Zn battery with impressive stability will greatly enrich the flexible energy‐storage technologies for future portable/wearable electronic applications.  相似文献   

7.
With the advent of intelligent electronics and green transportation systems, power sources with customized shape, flexibility, functionality and high security are indispensable. Innovative customizable solid-state batteries have recently been explored as a key-enabling technology to achieve this vision. Such custom-made power sources enable the monolithic integration of bipolar-stacked cells onto complex-shaped substrates, maximize space utilization of devices, meanwhile minimize the use of inactive components. Hence, they hold great potential in reducing the total weight of target electronic devices, extending their lifespan, and even as structural batteries to replace structural components in robotics, implants and electric vehicles. This review describes state-of-the-art of customizable solid-state batteries with a focus on fabrication techniques and corresponding material considerations. The relationship between the battery architecture design and form-factors of cells concerning their mechanical and electrochemical properties are in focus. The challenges and future developments of customizable solid-state batteries are elaborated with respect to their potential applications. Through novel material engineering, structural evolution, on-going extension of high-throughput fabrication technology, and integration of multifunctional systems, the customizable solid-state batteries will pave their way to power a growing share of smart electronics and modern transportation systems.  相似文献   

8.
Fiber supercapacitors (FSCs) are promising energy storage devices in portable and wearable smart electronics. Currently, a major challenge for FSCs is simultaneously achieving high volumetric energy and power densities. Herein, the microscale fiber electrode is designed by using carbon fibers as substrates and capillary channels as microreactors to space‐confined hydrothermal assembling. As P‐doped graphene oxide/carbon fiber (PGO/CF) and NiCo2O4‐based graphene oxide/carbon fiber (NCGO/CF) electrodes are successfully prepared, their unique hybrid structures exhibit a satisfactory electrochemical performance. An all‐solid‐state PGO/CF//NCGO/CF flexible asymmetric fiber supercapacitor (AFSC) based on the PGO/CF as the negative electrode, NCGO/CF hybrid electrode as the positive electrode, and poly(vinyl alcohol)/potassium hydroxide as the electrolyte is successfully assembled. The AFSC device delivers a higher volumetric energy density of 36.77 mW h cm?3 at a power density of 142.5 mW cm?3. In addition, a double reference electrode system is adopted to analyze and reduce the IR drop, as well as effectively matching negative and positive electrodes, which is conducive for the optimization and improvement of energy density. For the AFSC device, its better flexibility and electrochemical properties create a promising potential for high‐performance micro‐supercapacitors. Furthermore, the introduction of the double reference electrode system provides an interesting method for the study on the electrochemical performances of two‐electrode systems.  相似文献   

9.
To meet the increasing demands for portable and flexible devices in a rapidly developing society, it is urgently required to develop highly safe and flexible electrochemical energy‐storage systems. Flexible lithium–oxygen batteries with high theoretical specific energy density are promising candidates; however, the conventional half‐open structure design prevents it from working properly under water or fire conditions. Herein, as a proof‐of‐concept experiment, a highly safe flexible lithium–oxygen battery achieved by the synergy of a vital multifunctional structure design and a unique composite separator is proposed and fabricated. The structure can effectively prevent the invasion of water from the environment and combustion, which is further significantly consolidated with the help of a polyimide and poly(vinylidene fluoride‐co‐hexafluoropropylene) composite separator, which holds good water resistance, thermal stability, and ionic conductivity. Unexpectedly, the obtained lithium–oxygen battery exhibits superior flexibility, water resistance, thermal resistance, and cycling stability (up to 218 cycles; at a high current of 1 mA and capacity of 4 mA h). This novel water/fireproof, flexible lithium–oxygen battery is a promising candidate to power underwater flexible electronics.  相似文献   

10.
Emerging wearable electronics require flexible energy storage devices with high volumetric energy and power densities. Fiber‐shaped capacitors (FCs) offer high power densities and excellent flexibility but low energy densities. Zn‐ion capacitors have high energy density and other advantages, such as low cost, nontoxicity, reversible Faradaic reaction, and broad operating voltage windows. However, Zn‐ion capacitors have not been applied in wearable electronics due to the use of liquid electrolytes. Here, the first quasisolid‐state Zn‐ion hybrid FC (ZnFC) based on three rationally designed components is demonstrated. First, hydrothermally assembled high surface area and conductive reduced graphene oxide/carbon nanotube composite fibers serve as capacitor‐type positive electrodes. Second, graphite fibers coated with a uniform Zn layer work as battery‐type negative electrodes. Third, a new neutral ZnSO4‐filled polyacrylic acid hydrogel act as the quasisolid‐state electrolyte, which offers high ionic conductivity and excellent stretchability. The assembled ZnFC delivers a high energy density of 48.5 mWh cm?3 at a power density of 179.9 mW cm?3. Further, Zn dendrite formation that commonly happens under high current density is efficiently suppressed on the fiber electrode, leading to superior cycling stability. Multiple ZnFCs are integrated as flexible energy storage units to power wearable devices under different deformation conditions.  相似文献   

11.
The increasing demands for renewable energy to substitute traditional fossil fuels and related large‐scale energy storage systems (EES) drive developments in battery technology and applications today. The lithium‐ion battery (LIB), the trendsetter of rechargeable batteries, has dominated the market for portable electronics and electric vehicles and is seeking a participant opportunity in the grid‐scale battery market. However, there has been a growing concern regarding the cost and resource availability of lithium. The sodium‐ion battery (SIB) is regarded as an ideal battery choice for grid‐scale EES owing to its similar electrochemistry to the LIB and the crust abundance of Na resources. Because of the participation in frequency regulation, high pulse‐power capability is essential for the implanted SIBs in EES. Herein, a comprehensive overview of the recent advances in the exploration of high‐power cathode and anode materials for SIB is presented, and deep understanding of the inherent host structure, sodium storage mechanism, Na+ diffusion kinetics, together with promising strategies to promote the rate performance is provided. This work may shed light on the classification and screening of alternative high rate electrode materials and provide guidance for the design and application of high power SIBs in the future.  相似文献   

12.
The mechanical behavior and the deformation and failure micromechanisms of a thermally-bonded polypropylene nonwoven fabric were studied as a function of temperature and strain rate. Mechanical tests were carried out from 248 K (below the glass transition temperature) up to 383 K at strain rates in the range ≈10−3 s−1 to 10−1 s−1. In addition, individual fibers extracted from the nonwoven fabric were tested under the same conditions. Micromechanisms of deformation and failure at the fiber level were ascertained by means of mechanical tests within the scanning electron microscope while the strain distribution at the macroscopic level upon loading was determined by means of digital image correlation. It was found that the nonwoven behavior was mainly controlled by the properties of the fibers and of the interfiber bonds. Fiber properties determined the nonlinear behavior before the peak load while the interfiber bonds controlled the localization of damage after the peak load. The influence of these properties on the strength, ductility and energy absorbed during deformation is discussed from the experimental observations.  相似文献   

13.
Recent measurements have shown a record-breaking low thermal conductivity λtotal of less than 0.25 × 10−3 W·m−1·K−1 at temperatures of 120 K for an evacuated sample consisting of polyimide fibers with a trilobal fiber cross section. Existing models for the heat transport in fiber insulations cannot sufficiently describe fiber insulations consisting of fibers with non-cylindrical cross sections. In this article, a modification for the model for cylindrical fibers will be presented. The modifications for the trilobal cross section of the fiber will be explained and compared to the original cylindrical model. The results of the theoretical calculations will be discussed in comparison to experimental results of measurements performed with a guarded hot-plate apparatus at temperatures in the range from 120 K to 420 K.  相似文献   

14.
Incorporation of wind power with the current power grids and electricity related markets is an arduous task because of its volatile essence. As a result, there is a need for extra capacity as backup as wind power and battery are integral to one another. This research delves into the utilization of a lithium-ion battery storage system to reduce day ahead bid changes and market integration issues that exist due to sporadic disposition of wind power in Turkey. This research uses data from a 30 MW wind farm and considers added Lithium-ion batteries. Financial analyses have been carried out with lithium-ion investment, variable costs, and current market prices considered. Net present value of both systems was discovered as positive. This research advocates the use of storage systems for the developing countries such as Turkey. It demonstrates that with the drop of battery prices, storage systems have the potential to serve as more applicable options. Furthermore, the importance of energy storage regulation for storage system to enter the market is demonstrated.  相似文献   

15.
First insights into a 3D-printed composite of Portland cement paste and reinforcing short fibers (carbon, glass and basalt fibers, 3–6 mm) are presented, resulting in novel materials that exhibit high flexural (up to 30 MPa) and compressive strength (up to 80 MPa). Alignment of the fibers, caused by the 3D-printing process is observed, opening up the possibility to use the print path direction as a means to control fiber orientation within the printed structures. Apart from completely dense cementitious bodies, hierarchically structured bodies, displaying precisely adjusted macroporosity, are presented, the latter exhibiting a unique combination of strength and materials efficiency.  相似文献   

16.
The micro‐supercapacitors are of great value for portable, flexible, and integrated electronic equipments. Here, the large‐scale and integrated asymmetrical micro‐supercapacitor (AMSC) array is fabricated in virtue of the laser direct writing and electrodeposition technology. The AMSC shows the ideal flexibility, high areal specific capacitance (21.8 mF cm?2), and good rate capability. Moreover, its energy density reaches 12.16 µW h cm?2, outperforming most micro‐supercapacitors reported previously. Meanwhile, large‐scale series‐connected AMSCs are integrated on the flexible substrates (e.g., indium tin oxide‐polyethylene terephthalate film), which can power a veriety of the commercial electronics. The combination of AMSCs array, solar cell, and electronic device proves the feasibility for practical application in the portable, flexible, and integrated electronic equipments.  相似文献   

17.
Under development for next‐generation wearable electronics are flexible, knittable, and wearable energy‐storage devices with high energy density that can be integrated into textiles. Herein, knittable fiber‐shaped zinc–air batteries with high volumetric energy density (36.1 mWh cm?3) are fabricated via a facile and continuous method with low‐cost materials. Furthermore, a high‐yield method is developed to prepare the key component of the fiber‐shaped zinc–air battery, i.e., a bifunctional catalyst composed of atomically thin layer‐by‐layer mesoporous Co3O4/nitrogen‐doped reduced graphene oxide (N‐rGO) nanosheets. Benefiting from the high surface area, mesoporous structure, and strong synergetic effect between the Co3O4 and N‐rGO nanosheets, the bifunctional catalyst exhibits high activity and superior durability for oxygen reduction and evolution reactions. Compared to a fiber‐shaped zinc–air battery using state‐of‐the‐art Pt/C + RuO2 catalysts, the battery based on these Co3O4/N‐rGO nanosheets demonstrates enhanced and stable electrochemical performance, even under severe deformation. Such batteries, for the first time, can be successfully knitted into clothes without short circuits under external forces and can power various electronic devices and even charge a cellphone.  相似文献   

18.
19.
《Materials Letters》2005,59(24-25):2998-3001
Ultrafine porous cellulose triacetate (CTA) fibers were prepared by electrospinning with methylene chloride (MC) and a mixed solvent of MC/ethanol (EtOH) and their intra- and inter-fiber pore structures was investigated. Ultrafine porous CTA fibers electrospun with MC had isolated circular shape pores with a narrow size distribution in the range of 50–100 nm. In the case of ultrafine CTA fibers electrospun with MC/EtOH (90 / 10 v/v), they had interconnected larger pores in the range of 200–500 nm. These porous structures were induced by phase separation resulting from the rapid evaporation of solvent during the electrospinning process. However, non-porous corrugated fibers were obtained from MC/EtOH (85 / 15 v/v) and MC/EtOH (80 / 20 v/v) due to their lower vapor pressure. The pore sizes in ultrafine CTA fibers electrospun with MC showed a bimodal distribution centered at ∼17 and ∼64 nm. CTA fibers electrospun with MC/EtOH (90 / 10 v/v) showed the greatest porosity due to their larger intra-fiber pores and fiber diameter.  相似文献   

20.
The needs for stretchable batteries surge as wearable and epidermal electronics emerge. The development of stretchable batteries, however, remains a grand challenge, as the battery components are intrinsically brittle and fracture easily under mechanical loading. Existing efforts to increase the stretchability of battery components often involve complex fabrication processes and thus are not viable for scalable and cost-effective manufacturing. To address this challenge, herein a facile yet effective strategy is developed to fabricate stretchable electrodes and separator for Li-ion batteries using extrusion-based 3D printing of active materials mixed with nanofibrillated cellulose. The resulting electrodes and separator can achieve reversible stretchability of 50%. After 50 stretching cycles, the resistance of the electrodes under 50% stretch only increases by 3%. The origin of the exceptional mechanical and electrical performances of the 3D-printed battery components is twofold: (i) excellent deformability enabled by the 3D-printed serpentine structure at the component level; (ii) the robust nanoscale structure due to the high aspect ratios of nanofibrillated cellulose and carbon nanotubes and the strong interactions between nanofibrillated cellulose and carbon nanotubes or among the individual cellulose fibers at the material structure level. The facile 3D printing of the patterned electrodes/separator leads to low-cost manufacturing of high-performance stretchable Li-ion batteries, demonstrating its promising potential to enable stretchable energy storage devices for wearable and epidermal electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号