首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial endospores are the key safety targets for inactivation within low-acid foods. Herein, we investigated the inactivation of Bacillus subtilis CGMCC 1.1087 spores (107 CFU/mL) in sterile distilled water using moderate electric fields (MEF, 300 V/cm) under various temperatures (<30, 55, 65 and 75 °C). MEF treatment at below 30 °C resulted in 0.6-log reduction of spores, while treatments for 60 min without electric fields showed no inactivation. Inactivation induced by MEF in the same treatment time increased to 1.8-, 2.0- and 2.5-log as temperature increased to 55, 65 and 75 °C. Spores treated with MEF at <30, 55, 65 and 75 °C or mild heat (55, 65 and 75 °C) scarcely lost heat resistance, suggesting that spores did not germinate during MEF or mild heat treatment. The viability of MEF-treated spores did not increase by addition of lysozyme (3 μg/mL) in recovery plates, preincubation for 1 h in a 1:1 mixture of 60 mM Ca2+ and DPA, or lysozyme treatment in hypertonic medium. Confocal laser scanning microscopy photomicrographs showed that exposure to MEF induced a marked increase in the permeability of inner membrane and cortex. These findings suggested that damage of the cortex and inner membrane, rather than spore nutrient germinant receptors or cortex lytic enzymes, are possible reasons contributing to inactivation of B. subtilis spores by MEF. This study indicates that MEF at mild temperatures (55 to 75 °C) have the potential for spore inactivation.Industrial relevanceLiterature in the past few years has shown that moderate electric fields (MEF), typically associated with ohmic heating, have nonthermal effects on bacterial spores, leading to accelerated inactivation. The current work extends the range of temperatures to those well below thermally lethal conditions, and shows that some spore inactivation occurs under MEF, even when temperatures are sublethal. Little or no germination is observed, and spore inner membranes are increasingly compromised over time. The elucidation of such nonthermal effects would be significant to the food industry as it seeks increasingly nonthermal methods for inactivation of spores.  相似文献   

2.
Spores of wild-type Bacillus subtilis PS533 were treated by wet heat at 75 °C for 30 min, and high pressure CO2 (HPCD) at 6.5 MPa and 30 °C or 75 °C for 30 min. The spores were analyzed for wet heat resistance (85 °C, 90 °C, 95 °C) and typical germination events including DPA release and cortex hydrolysis, inner membrane permeability, and germination triggered by nutrient (L-valine and AGFK) or non-nutrient (dodecylamine and high pressure at 150 MPa or 550 MPa) germinants. The results showed that (i) HPCD-treated spores exhibited reduced wet heat resistance compared to the untreated or wet heat-treated spores; (ii) HPCD-treated spores did not undergo typical germination events such as DPA release or cortex hydrolysis compared to normally germinated spores; (iii) HPCD-treated spores released more metal ions and exhibited decreased ability to maintain DPA, indicating that the permeability of inner membrane of HPCD-treated spores was increased; (iv) HPCD-treated spores exhibited reduced germination rate when triggered by L-valine or 150 MPa, but increased germination rate when triggered by dodecylamine or 550 MPa, suggesting that the fluidity of the inner membrane of HPCD-treated spores might be increased. These results indicated that HPCD could reduce the wet heat resistance of spores, and this resistance decrease was probably due to the modification of the inner membrane caused by HPCD.Industrial relevanceThe extremely high wet heat resistance of spores makes them a significant problem in the thermal processing of foods. Thus, it of great interest to develop a process to reduce the wet heat resistance of spores. In this work, we found that HPCD can significantly reduce the wet heat resistance of B. subtilis spores, and this was achieved by perturbing the inner membrane of spores. These results can improve our understanding of the inactivation mechanism of spores by HPCD, and also provide an alternative approach for spore inactivation in foods.  相似文献   

3.
Abstract: High‐pressure thermal sterilization (HPTS) is an emerging technology to produce shelf stable low acid foods. Pressures below 300 MPa can induce spore germination by triggering germination receptors. Pressures above 500 MPa could directly induce a Ca+2‐dipicolinic acid (DPA) release, which triggers the cortex‐lytic enzymes (CLEs). It has been argued that the activated CLEs could be inactivated under HPTS conditions. To test this claim, a wild‐type strain and 2 strains of Bacillus subtilis spores lacking germinant receptors and one of 2 CLEs were treated simultaneously from 550 to 700 MPa and 37 to 80 C (slow compression) and at 60 to 80 C up to 1 GPa (fast compression). Besides, an additional heat treatment to determine the amount of germinated cells, we added TbCl3 to detect the amount of DPA released from the spore core via fluorescent measurement. After pressure treatment for 120 min at 550 MPa and 37 °C, no inactivation was observed for the wild‐type strain. The amount of released DPA correlated to the amount of germinated spores, but always higher compared to the belonging cell count after pressure treatment. The release of DPA and the increase of heat‐sensitive spores confirm that the inactivation mechanism during HPTS passes through the physiological states: (1) dormancy, (2) activation, and (3) inactivation. As the intensity of treatment increased, inactivation of all spore strains also strongly increased (up to ?5.7 log10), and we found only a slight increase in the inactivation of one of the CLE (sleB). Furthermore, above a certain threshold pressure, temperature became the dominant influence on germination rate. Practical Application: The continuous increase of high‐pressure (HP) research over the last several decades has already generated an impressive number of commercially available HP pasteurized products. Furthermore, research helped to provoke the certification of a pressure‐assisted thermal sterilization process by the U.S. FDA in February 2009. However, this promising sterilization technology has not yet been applied in industrial settings. An improved understanding of spore inactivation mechanisms and the ability to calculate desired inactivation levels will help to make this technology available for pilot studies and commercialization at an industrial scale. Moreover, if the synergy between pressure and elevated temperature on the inactivation rate could be identified, clarification of the underlying inactivation mechanism during HP thermal sterilization could help to further optimize the process of this emerging technology.  相似文献   

4.
The contamination of enterotoxigenic Clostridium perfringens spores on food contact surfaces posses a serious concern to food industry due to their high resistance to various preservation methods typically applied to control foodborne pathogens. In this study, we aimed to develop an strategy to inactivate C. perfringens spores on stainless steel (SS) surfaces by inducing spore germination and killing of germinated spores with commonly used disinfectants. The mixture of l-Asparagine and KCl (AK) induced maximum spore germination for all tested C. perfringens food poisoning (FP) and non-foodborne (NFB) isolates. Incubation temperature had a major impact on C. perfringens spore germination, with 40 °C induced higher germination than room temperature (RT) (20 ± 2 °C). In spore suspension, the implementation of AK-induced germination step prior to treatment with disinfectants significantly (p < 0.05) enhanced the inactivation of spores of FP strain SM101. However, under similar conditions, no significant spore inactivation was observed with NFB strain NB16. Interestingly, while the spores of FP isolates were able to germinate with AK upon their adhesion to SS chips, no significant germination was observed with spores of NFB isolates. Consequently, the incorporation of AK-induced germination step prior to decontamination of SS chips with disinfectants significantly (p < 0.05) inactivated the spores of FP isolates. Collectively, our current results showed that triggering spore germination considerably increased sporicidal activity of the commonly used disinfectants against C. perfringens FP spores attached to SS chips. These findings should help in developing an effective strategy to inactivate C. perfringens spores adhered to food contact surfaces.  相似文献   

5.
Bacillus cereus spores are resistant to high hydrostatic pressure (HHP) processing treatment. A combination of UV-TiO2 photocatalysis (UVTP for 10 min) and two cycles of 600 MPa HHP treatment for 10 min for the first cycle and 1 min for the second cycle (UVTP-2HHP) at ambient temperature was applied to inactivate B. cereus spores inoculated on a solidified agar matrix (SAM) used as a model matrix. Two cycles of HHP treatment were used as a strategy for induction of spore germination, followed by inactivation. UVTP and 2 cycles of HHP resulted in a 5.0-log CFU/cm2 spore reduction (initial spore count was 6.6 log CFU/cm2), including an approximate 0.8-log CFU/cm2 reduction due to a synergistic effect. The inactivation mechanism of UVTP pretreatment was related to lipid peroxidation of the spore membrane based on the level of malondialdehyde (MDA) making spores susceptible to the HHP treatment. Flow cytometry and transmission electron microscopic (TEM) analyses showed severe physiological alteration and structural damage to spores after the combined treatment. UVTP and 2 cycles of HHP showed potential for effective inactivation of B. cereus to ensure food safety from B. cereus spores on food products.Practical applicationsInactivation of bacterial spores remains a technical challenge for HHP and other interventions because spores are highly resistant to high pressure. Pretreatment with UVTP followed by two cycles of HHP resulted in reduction in B. cereus spores due to a synergistic effect. This hurdle technology of UVTP and HHP can help food industry in ensuring food safety against the Bacillus spores.  相似文献   

6.
The aim of this study was to investigate the effect of various factors on the germination of Clostridium estertheticum endospores (spores) in relation to beef. The effect of heat on germination was determined by recovering C. estertheticum on Columbia agar from spore suspensions not heated or heated at 63, 70 or 80 °C for various times. The effects of pH, temperature and oxygen were determined, by enumeration of remaining ungerminated spores during incubation in Meat Juice medium (MJM). Amino acids and lactate were tested for their ability to trigger germination of C. estertheticum spores by monitoring dipicolinic acid (DPA) release. Heat treatment of spores at 80 °C for ≤ 20 min significantly (p < 0.05) increased the numbers of spores recovered on blood agar. Neither incubation temperature nor oxygen affected germination in MJM. The optimal pH for germination was 7.0 to 7.5. Incubation with leucine or aspartic acid caused a 1.3% release of DPA, the highest among all amino acids tested. Incubation with lactate resulted in a 4.1% release of DPA, which was significantly (p < 0.05) higher than those from incubation with amino acids. The DPA release from incubation with lactate, lactate with amino acids, or MJM was similar (p > 0.05).  相似文献   

7.
This research was aimed at investigating the bioactivity of lysozyme towards Alicyclobacillus acidoterrestris. Lysozyme (0.1–20 ppm) was tested towards five different strains; the experiments were performed on both spores and vegetative cells using a microdilution approach to assess the minimal inhibitory concentration (MIC). Thereafter, spore viability of two selected strains was evaluated through the traditional plate count. Finally, an experiment was run to assess the role of lysozyme on the complex phenomenon of spore germination. The MIC of lysozyme towards vegetative cells varied from 0.1 to 6 ppm, while for the spores, it was from 0.1 to 3 ppm. Concerning spore viability, the effect of lysozyme relied upon its amount on the broth, as at MIC it caused a slight reduction in spores (approximately 1 log cfu ml?1) after 24 h; otherwise, higher concentrations caused a decrease in spore level below the detection limit. Concerning spore germination, lysozyme exerted a promoting effect on this phenomenon and reduced the optical density by 66%.  相似文献   

8.
In this study, we investigated the role of lysozyme on the viability of Bacillus cereus, Bacillus subtilis, Bacillus pumilus and Bacillus anthracis (Sterne) in egg white (EW), ground beef and milk. At 35 °C in EW, growth rates (GR) for B. cereus, B. subtilis, B. pumilus and B. anthracis were 0.005, −0.018, −0.028 and −0.029 OD600/h, respectively. Heat-treating EW at 55 and 60 °C reduced the inactivating effect of EW by 3.1 and 10.5-fold, respectively. Addition of lysozyme (2 mg/ml) to 60 °C-treated EW increased the inactivation rate 5.76-fold, indicating involvement of lysozyme in B. anthracis inactivation. B. anthracis inactivation was influenced by pH, as shown by a progressive increase in inactivation rate from 0.25 to −4.42 logs CFU/h over a pH range of 6.0-8.5. Adding 2 mg/ml lysozyme to milk and ground beef also suppressed the growth of B. anthracis 3.3 and 6.5-fold, respectively. These data indicate that lysozyme, as a natural component of EW or potential additive in other foods, could reduce biothreat risks presented by bioterror agents.  相似文献   

9.
The advantage of using high pressure (HP) cycling treatment compared with continuous HP treatment was investigated for the inactivation of bacterial spores. The effects of parameters such as pulse number, pressure level, treatment temperature, compression and decompression rates, and time between pulses were evaluated. For this purpose, Bacillus subtilis and B. cereus spores (108 and 106 CFU/mL respectively) were suspended in 2-(N-morpholino) ethanesulfonic acid (MES) buffer solution, tryptone salt (TS) buffer solution, or infant milk and treated by HP cycling at 300–400 MPa, at 38–60 °C, for 1–5 pulses. Pressure cycling reduced the number of viable spores by 1.8 and 5.9 log respectively for B. subtilis and B. cereus species. Continuous HP treatments were performed at the same pressure and temperature for similar treatment durations. Our results showed that the spore inactivation ratio was correlated with the cumulative exposure time to pressure rather than to effects of the cycling process. Greater spore inactivation caused by HP cycling was observed only when faster compression and decompression rates were applied, probably due to adiabatic heating. A three-step kinetic model was developed, which seemed to support our hypothesis regarding the mechanisms of inactivation by pressure cycling and continuous HP treatments.Industrial relevanceThe resistance of bacterial spores to HP limits the industrial applications to refrigerated food products. In this study, we investigated the use of pressure cycling as a means to improve spore baroinactivation at moderate temperatures (T < 60 °C). We showed that cycling pressure does not significantly increase bacterial spore inactivation in comparable treatment duration, but certainly increases material fatigue in HP vessels. Thus, under moderate temperature, cycling pressure treatment is not industrially relevant.  相似文献   

10.
The aim of this study was to investigate the influence of surface hydrophobicity and roughness of carrier materials on the inactivation of bacterial spores with gaseous hydrogen peroxide whereas condensate formation is prevented. Spores of Bacillus subtilis and Bacillus atrophaeus were applied either as single spore culture or as a mixed spore population to simulate natural contamination with microorganisms of different characteristics. Inactivation with gaseous hydrogen peroxide was carried out at 5200 ppm hydrogen peroxide without condensate formation. The inactivation results of B. subtilis and B. atrophaeus spores on carrier materials with varying surface hydrophobicity differed significantly. However, inactivation of the mixed spore populations resulted in similar resistance compared to the single spore batches. The results of this study indicate that surface hydrophobicity most probably has an impact on the inactivation with gaseous hydrogen peroxide whereas surface roughness only plays a minor role.  相似文献   

11.
The spores of Clostridium perfringens can survive and grow in cooked/pasteurized meat, especially during the cooling of large portions. In this study, 600 MPa high pressure thermal processing (HPTP) at 75 °C for the inactivation of C. perfringens spores was compared with 75 °C thermal processing alone. The HPTP enhanced the inactivation of C. perfringens spores in beef slurry, resulting in 2.2 log reductions for HPTP vs. no reductions for thermal processing after 20 min. Then, the HPTP resistance of two C. perfringens spore strains in beef slurry at 600 MPa was compared and modeled, and the effect of temperature investigated. The NZRM 898 and NZRM 2621 exhibited similar resistance, and Weibull modeled well the log spore survivor curves. The spore inactivation increased when HPTP temperature was raised from 38 to 75 °C. The results confirm the advantage of high pressure technology to increase the thermal inactivation of C. perfringens spores in beef slurry.Industrial relevanceC. perfringens spores may cause food/meat poisoning as a result of improperly handled and prepared foods in industrial kitchens. Thermal processes at 100 °C or higher are generally carried out to ensure the elimination of these pathogenic spores. High pressure processing (HPP) is a food pasteurization technique which would help to maintain the sensorial and nutritional properties of food. Preservation of foods with HPP in conjunction with mild heat (HPTP) would enhance the spore inactivation compared to thermal processing alone at the same temperature, due to a known germination–inactivation mechanism. This technology, together with the application of Good Manufacturing Practices, including rapid cooling, is a good alternative to the traditional methods for producing safe processed meat and poultry products with enhanced sensory and nutritional quality.  相似文献   

12.
The physiological response of Bacillus licheniformis spores to high pressure and thermal inactivation in sodium citrate buffer and nutrient broth was investigated using multiparameter flow cytometry. Spores were treated by heat-only at 121 °C, by high pressure at 150 MPa (37 °C), or by a combined high pressure and heat treatment at 600 MPa and 77 °C, and then dual stained with the fluorescent dyes SYTO 16 and propidium iodide (PI). For pressure treated spores, but not heat-only treated spores, four distinct sub-populations were detected by flow cytometry, and for these we suggest a three step model of inactivation involving a germination step following hydrolysis of the spore cortex, an unknown step, and finally an inactivation step with physical compromise of the spore's inner membrane.

Industrial relevance

This preliminary study offers a simple and fast flow cytometric method for the rapid assessment of the physiological state of bacterial spores following high pressure and thermal processing. An improved understanding of the mechanisms of spore inactivation will aid in the food safety assessment of pressure assisted thermal sterilisation in particular, and also assist in the commercialisation of these processes facilitating adoption by industry.  相似文献   

13.
The combined effects of pressure, temperature, pH and the presence of nisin or sucrose laurate on the survival of spores of Bacillus subtilis 168 and Clostridium sporogenes PA 3679 were investigated. Spore populations of PA 3679 were reduced by 2.5-log10 when exposed to 404 megapascals (MPa) at 25°C, pH 4.0 for 30 min, but the same treatment at pH 7.0 resulted in a <0.5-log10 reduction in spore counts. Pressurization of B. subtilis spores at 70°C, pH 6.0 or 7.0 for 15 min at 404 MPa resulted in a 5-log10 reduction as compared to a <0.5-log10 reduction for the same pressurization treatment at 25°C. For the inactivation of spores of B. subtilis and PA 3679, the addition of nisin to the plating medium appeared to be synergistic in some instances when combined with pressurization at elevated temperatures and reduced pH. B. subtilis 168 was resistant to 0.1% sucrose laurate, but when combined at ≤6.0 pH with a 15-min treatment of 404 MPa at 45°C, a dramatic synergistic effect eliminated spore suspensions of 1×106/ml.  相似文献   

14.
Pulsed Light (PL) uses intense flashes of white light rich in ultraviolet (UV) light for decontamination. A log-reduction higher than 5 was obtained in one flash and at fluences lower than 1.8 J/cm2 on spores of a range of spore-forming bacteria, of vegetative cells of non-spore-forming bacteria and on yeasts spread on agar media. Vegetative cells were more sensitive than spores. The inactivation by PL of Bacillus subtilis, B. atrophaeus, B. cereus, Geobacillus stearothermophilus, and Aspergillus niger spores sprayed on polystyrene was similar. The inactivation by PL of B. subtilis and A. niger spores sprayed on glass was slightly lower than on polystyrene. No alteration of the spore structures was detected by scanning electron microscopy for both PL treated B. subtilis and A. niger spores. The inactivation of spores of B. subtilis, B. atrophaeus, B. cereus and B. pumilus by PL or by continuous UV-C at identical fluences was not different, and was much higher by PL for A. niger spores. The increase in the input voltage of the lamps (which also increases the UV-C %) resulted in a higher inactivation. There was no correlation between the resistance to heat and the resistance to PL. The relative effect of UV-C radiations and light thermal energy on PL inactivation was discussed.  相似文献   

15.
Atmospheric plasma provides the advantages of high microbial inactivation that can be performed under ambient conditions. It is consequently regarded as potential alternative to traditional food preservation methods.In this study we systematically tested the influence of argon as plasma carrier gas with admixtures of oxygen (0–0.34 vol.%) and nitrogen (0–0.3 vol.%) towards its emission intensity of UV-C light, excited OH and N2-species and atomic oxygen. A mixture of argon, 0.135 vol.% oxygen and 0.2 vol.% nitrogen emitted four fold more UV photons than pure argon. However, sporicidal effects on Bacillus atrophaeus (3.1 log10) and Bacillus subtilis spores (2.4 log10) were found for pure argon plasma, which were similar as compared to the sporicidal effect of the plasma with highest UV-emission. To distinguish lethal effects caused by emitted UV-light and reactive species, UV-sensitive mutant spore strains (PS578 and FB122) were exposed to plasmas with different UV-emission intensities and a significant impact of UV-light on the first phase of spore inactivation was confirmed.Industrial relevanceAs an efficient method for the inactivation of microorganisms at low temperatures and atmospheric pressure, plasma is already commercially used for the sterilization of medical devices. The results presented in this study could be useful for a process optimization regardless if the plasma is applied for food preservation or surface decontamination. Especially the impact of emitted UV photons from the plasma on the first inactivation phase of endospores attached to surfaces, depicts a high potential of such plasmas for a rapid spore inactivation.  相似文献   

16.
The efficiency of high-pressure (HP) treatment to eliminate vegetative bacterial cells is synergistically increased by many natural antimicrobials, but the effects on spores are poorly described. Here we report the effect of eleven plant essential oils on the nutrient- and HP-induced germination of spores of a group VI psychrotolerant Bacillus cereus strain. Ten oils partially inhibited nutrient-induced germination. These oils also inhibited HP-induced germination, but some inhibited only germination at moderate (200 MPa) pressure and others only at very high (600 MPa) pressure. Inhibition of spore germination by essential oils may have an adverse effect on the effectiveness of spore inactivation by HP at moderate temperatures, and this should be taken into account when designing combined processes. Essential oil from carrot seed did not inhibit nutrient or HP germination although it showed growth inhibitory properties, and essential oils with these properties may therefore open interesting perspectives in combination treatments with HP.Industrial relevanceHP treatment is an alternative processing technique that preserves a better balance of food quality and microbiological safety as compared to thermal processing. While most vegetative bacteria are efficiently inactivated by HP, inactivation of spores is inefficient. At moderate temperature, spore inactivation proceeds in a two-step process in which spores first germinate and are subsequently inactivated. The combination with natural antimicrobials is a promising approach to enhance the efficiency of HP processing because it exerts a synergistic effect on inactivation of vegetative bacteria. However, the current work is one of the first to document the effect of essential oils on the HP-induced germination of spores.  相似文献   

17.
Bacillus cereus is an endospore-forming bacterium able to cause food-associated illness. Different treatment processes are used in the food industry to reduce the number of spores and thereby the potential of foodborne disease. Chitosan is a polysaccharide with well-documented antibacterial activity towards vegetative cells. The activity against bacterial spores, spore germination and subsequent outgrowth and growth (the latter two events hereafter denoted (out)growth), however, is poorly documented. By using six different chitosans with defined macromolecular properties, we evaluated the effect of chitosan on Bacillus cereus spore germination and (out)growth using optical density assays and a dipicolinic acid release assay. (Out)growth was inhibited by chitosan, but germination was not. The action of chitosan was found to be concentration-dependent and also closely related to weight average molecular weight (Mw) and fraction of acetylation (FA) of the biopolymer. Chitosans of low acetylation (FA = 0.01 or 0.16) inhibited (out)growth more effectively than higher acetylated chitosans (FA = 0.48). For the FA = 0.16 chitosans with medium (56.8 kDa) and higher Mw (98.3 kDa), a better (out)growth inhibition was observed compared to low Mw (10.6 kDa) chitosan. The same trend was not evident with chitosans of 0.48 acetylation, where the difference in activity between the low (19.6 kDa) and high Mw (163.0 kDa) chitosans was only minor. In a spore test concentration corresponding to 102-103 CFU/ml (spore numbers relevant to food), less chitosan was needed to suppress (out)growth compared to higher spore numbers (equivalent to 108 CFU/ml), as expected. No major differences in chitosan susceptibility between three different strains of B. cereus were detected. Our results contribute to a better understanding of chitosan activity towards bacterial spore germination and (out)growth.  相似文献   

18.
The commercial potential of high pressure and thermal processing (HPTP) was investigated against Alicyclobacillus acidoterrestris spores in commercial acidic apple juice beverage and in acidified and neutral potassium buffers. With starting spore counts prior to treatments being 6.5 and 7.2 log10 respectively for strains AJA 66 (D90°C 15.4 min) and ATCC 49025 (D90°C 8.5 min), HPTP at 600 MPa at 80 °C for 3 min provided an optimal treatment with spore viability reduced below the detection limit for both strains. HPTP at 80 °C for 1 min and HPTP at 70 °C for 3 min achieved 4.1–4.5 log10 CFU/mL reduction. HPTP at 70 °C for 1 min reduced the number of viable spores by 2.0–2.5-log10 CFU/mL. Flow cytometry revealed the presence of membrane-compromised spores among culturable spores following HPTP and heat alone treatments at different temperatures. Electron microscopy clearly showed the efficiency of HPTP with crushed or hollow spores predominating after treatments. No correlation between HPTP susceptibility and genetic diversity was observed for two genotypes of A. acidoterrestris spores. The treatment combination provides a promising option for industrial utility since it requires lower heat and processing time.  相似文献   

19.
Spores of Bacillus sporothermodurans are known to be contaminant of dairy products and to be extremely heat-resistant. The induction of endospore germination before a heat treatment could be an efficient method to inactivate these bacteria and ensure milk stability. In this study, the nutrient-induced germination of B. sporothermodurans LTIS27 spores was studied. Testing the effect of 23 nutrient elements to trigger an important germination rate of B. sporothermodurans spores, only d-glucose, l-alanine, and inosine were considered as strong independent germinants. Both inosine and l-alanine play major roles as co-germinants with several other amino acids. A central composite experimental design with three factors (l-alanine, d-glucose, and temperature) using response surface methodology was used to optimize the nutrient-induced germination. The optimal rate of nutrient-induced germination (100%) of B. sporothermodurans spores was obtained after incubation of spore for 60 min at 35 °C in presence of 9 and 60 mM of d-glucose and l-alanine, respectively. The results in this study can help to predict the effect of environmental factors and nutrients on spore germination, which will be beneficial for screening of B. sporothermodurans in milk after induction their germination. Moreover, the chosen method of optimization of the nutrient-induced germination was efficient in finding the optimum values of three factors.  相似文献   

20.
The current study aimed to develop an inactivation strategy for Clostridium perfringens spores in meat through a combination of spore activation at low pressure (100–200 MPa, 7 min) and elevated temperature (80 °C, 10 min); spore germination at high temperatures (55, 60 or 65 °C); and inactivation of germinated spores with elevated temperatures (80 and 90 °C, 10 and 20 min) and high pressure (586 MPa, at 23 and 73 °C, 10 min). Low pressures (100–200 MPa) were insufficient to efficiently activate C. perfringens spores for germination. However, C. perfringens spores were efficiently activated with elevated temperature (80 °C, 10 min), and germinated at temperatures lethal for vegetative cells (≥55 °C) when incubated for 60 min with a mixture of l-asparagine and KCl (AK) in phosphate buffer (pH 7) and in poultry meat. Inactivation of spores (∼4 decimal reduction) in meat by elevated temperatures (80–90 °C for 20 min) required a long germination period (55 °C for 60 min). However, similar inactivation level was reached with shorter germination period (55 °C for 15 min) when spore contaminated-meat was treated with pressure-assisted thermal processing (568 MPa, 73 °C, 10 min). Therefore, the most efficient strategy to inactivate C. perfringens spores in poultry meat containing 50 mM AK consisted: (i) a primary heat treatment (80 °C, 10 min) to pasteurize and denature the meat proteins and to activate C. perfringens spores for germination; (ii) cooling of the product to 55 °C in about 20 min and further incubation at 55 °C for about 15 min for spore germination; and (iii) inactivation of germinated spores by pressure-assisted thermal processing (586 MPa at 73 °C for 10 min). Collectively, this study demonstrates the feasibility of an alternative and novel strategy to inactivate C. perfringens spores in meat products formulated with germinants specific for C. perfringens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号