首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth of pure and mixed cultures of Lactococcus lactis and Streptococcus thermophilus under simulated Cheddar cheese manufacture was examined. Cell-free wheys (CFW) of the cultures were prepared for analysis by automated spectrophotometry (AS). The maximal growth rate of the lactococci in S. thermophilus R0083 CFW was 13% higher than that noted in their own CFW and three lactococci also gave higher biomass levels (ODmax). During simulated Cheddar cheese fermentations with four paired cultures, one L. lactis strain grew 20% less when paired with S. thermophilus R0083, and an increase in colony forming units (cfu) was found with one other lactococcal strain. Viable counts of S. thermophilus in mixed cultures varied by less than 0.1 log cfu mL?1. The AS data on ODmax in CFW were useful in predicting the evolution of cfu in the fermented mixed cultures. As a function of strain, the presence of S. thermophilus in a Cheddar fermentation process can enable extended growth of the lactococci.  相似文献   

2.
This study evaluates physical and chemical stability of ultrasound-assisted grape seed oil primary emulsions stabilised by varying compositions of caseins to whey proteins (80:20, 60:40, 50:50 and 40:60) at different sono-operating conditions (81.9 and 117.0 J mL−1). Physical and chemical stabilities were influenced by both sonication energy densities and milk protein compositions. Emulsions prepared at 81.9 J mL−1 energy density with ≥40% whey protein fraction (60:40, 50:50, 40:60 and WPI) showed greater physical stability than the emulsions sonicated at 117.0 J mL−1 which exhibited physical instability due to the depletion flocculation mechanism at the critical casein concentration (≥40%). The emulsion oxidative stability was found to be affected by sonication conditions as 117.0 J mL−1 induced the oxidation reactions once the whey concentration exceeds 40%. Therefore, ultrasound prepared emulsions with casein to whey ratios of 60:40, 50:50, 40:60 and WPI at 81.9 J mL−1 energy density was found to be stable for 10 days at 4 °C.  相似文献   

3.
The present work investigated the ability of Bifidobacterium catenulatum, Bifidobacterium adolescentis, Lactobacillus plantarum, Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus to produce folate in milk and complex media. Moreover, the effect of two prebiotics, fructooligosaccharides and galactooligosaccharides, on folate biosynthesis was also evaluated. Levels of the predominant folate forms, i.e., tetrahydrofolate and 5-methyltetrahydrofolate, were determined using high performance liquid chromatography after 0, 6, 10 and 24 h incubation. B. catenulatum (28.82 ± 2.02 μg 100 mL−1) and S. thermophilus (19.03 ± 1.95 μg 100 mL−1) produced the highest level of folate in complex media and milk, respectively. In most cases, the bacteria tested reached the maximum folate levels within 6 h and 10 h of incubation. The inclusion of prebiotics in the culture medium did not stimulate the synthesis of folate by any of the five bacteria studied, although it increased the rate of bacterial growth.  相似文献   

4.
A semi-hard cheese produced from milk artificially contaminated with Clostridium tyrobutyricum spores (2.5×103 mL−1) was used as a model for studying the ability of bacteriocin-producing Lactobacillus gasseri K7 (Rifr) to inhibit clostridia. The added lactobacilli did not inhibit the primary starter culture (Streptococcus thermophilus), but inhibited non-starter mesophilic lactobacilli. Late blowing as a result of Cl. tyrobutyricum outgrowth and butyric acid fermentation occurred in all cheeses however it was reduced in cheeses with added Lb. gasseri. After 6 weeks, the average amount of butyric acid was significantly higher in cheeses without added lactobacilli (1.43 vs. 0.70 g kg−1). At the end of 8-weeks ripening, 2.8×107 cfu g−1 of K7 (Rifr) viable cells were detected. Using the total DNA from cheeses with added K7 (Rifr) strain, PCR products were amplified with primers specific for Lactobacillus, Lb. gasseri and K7 bacteriocin gene.  相似文献   

5.
In the present study, the viability of heat-shocked and non-shocked Cronobacter sakazakii, a foodborne pathogen, after drying and during the fermentation as well as storage of lactic cultured milk was evaluated. It was found that heat shock increased the viability of C. sakazakii. The pure culture of C. sakazakii, regardless of heat shock, grew rapidly in skim milk with a viable population of ca. 8.59–8.70 log cfu/ml after ca. 48 h of cultivation. Thereafter, the viable population of C. sakazakii remained stable. While in the mix culture with Streptococcus thermophilus or Lactobacillus bulgaricus, a marked reduction in the viable population of C. sakazakii was noted after 24 h of cultivation in skim milk. Nevertheless, at the end of fermentation, the heat-shocked C. sakazakii had a viable population of 5.93–6.01 log cfu/ml, which is significantly higher (P < 0.05) than that of non-shocked cells of 4.96–4.99 log cfu/ml. While the presence of C. sakazakii did not affect the growth of lactic acid bacteria in skim milk. Additionally, heat shock was found to enhance the survival of C. sakazakii after freeze-drying or spray-drying and during the storage of the lactic fermented milk products (pH 4.3) at 5 °C for 48 h.  相似文献   

6.
The microflora of 59 East African camel milk samples of unfermented raw milk supply chains and spontaneously fermented milk (suusac) was analyzed to describe the diversity of predominant lactic acid bacteria (LAB), identify potential health risks and study bacteriocin-like inhibitory substance (BLIS) production. Bacterial isolates (n = 532) were identified using a genotypic approach incorporating rep-PCR, 16S rRNA gene sequencing, and species-specific PCR assays. The bacterial numbers on MRS and M17 agar exceeded log10 6.5 colony forming units (CFU) mL?1 for raw milk supply chain samples and log10 8 CFU mL?1 for suusac. Streptococcus agalactiae and Staphylococcus spp. were predominant in unfermented products, while suusac contained predominantly Streptococcus infantarius subsp. infantarius followed by Lactococcus lactis subsp. lactis, Streptococcus thermophilus, and lactobacilli. Fifty per cent of S. infantarius subsp. infantarius isolates originating from 15 out of 24 suusac samples produced a BLIS active against other LAB or Listeria and representing a potential selective advantage during fermentation. This study provides a detailed insight at the genotypic level into the LAB diversity of previously unstudied dairy products. It indicates potential health risks for consumers and the need for hygienic and manufacturing interventions and reports a potentially novel BLIS produced by S. infantarius subsp. infantarius.  相似文献   

7.
The study investigated the potential of pulsed light (PL) in the pasteurization of tender coconut water (TCW). The initial counts of E. coli, B. cereus and L. monocytogenes in the inoculated TCW were 7.00, 9.14 and 7.8 log10 cfu mL−1, respectively. For a PL fluence of 465 J cm−2, E. coli, B.cereus and L. monocytogenes exhibited a log reduction of 5.12, 2.97 and 3.40, respectively. Bacillus cereus and Listeria monocytogenes exhibited greater resistance than Escherichia coli in the TCW. Peroxidase (POD) was more sensitive to PL treatments than polyphenoloxidase (PPO) in TCW. Weibull model and nth order model exhibited excellent fit for microbial inactivation (R2 > 0.96) and enzyme inactivation (R2 > 0.97) kinetics, respectively. While 5-log10 reduction of B. cereus and L. monocytogenes was achieved at 2.5 kV|2.5 min (1073 J cm−2), PPO was inactivated by greater than 99% at 2.9 kV| 5 min (2988 J cm−2). While the total reducing sugars increased, the changes in color (0.49 < ΔE* < 1.51), pH, total soluble solids, and acidity were insignificant after the PL pasteurization. The PL condition of 2.9 kV|5 min preserved 21 and 24% more phenolics and ascorbic acid in TCW, along with greater sensory scores than the thermal treatment (90 °C|3 min).Industrial significanceThe outcome of this study determined the intensity (fluence of 2988 J/cm2) and penetration depth (4–5 mm) required for the pasteurization of tender coconut water (TCW). On an industrial scale of large processing volumes, continuous pulsed light (PL) pasteurization of TCW can be undertaken in an annular flow reactor or thin film flat bed chamber. The thickness of the film can be mimicked from this study to ensure adequate penetration of PL in the sample to achieve adequate lethality.  相似文献   

8.
The effects of low-frequency ultrasound on the production of volatile compounds in model casein protein systems containing various fat concentrations of 2%, 4% and 6% (w/w) were investigated. Ultrasound application was performed at 20 kHz for up to 10 min which corresponded to energy densities ranging from 9.54 to 190.8 J mL−1. Similar volatile compounds were detected both in pure fat and mixtures of casein and fat (CF) systems. These volatiles belonged to the groups of aldehydes, ketones, esters, alcohols and hydrocarbons, which were the products of oxidation of lipids or protein degradation due to acoustic cavitation. The amount of fat in the casein systems had minor effects on the production of volatiles, whereas the production of volatile compounds was significantly affected by the ultrasound treatment. Short sonication times <5 min generated similar volatile profiles to the untreated samples. In contrast, prolonged sonication for 5 and 10 min considerably increased the production of volatile compounds and the amounts of fatty acids. Thus, the application of low–frequency ultrasound for short periods should be considered to minimise the production of volatile compounds which can ultimately affect the taste.  相似文献   

9.
《International Dairy Journal》2005,15(11):1184-1190
Yoghurts were produced from a base milk containing three important nutraceuticals, namely ω-3-fatty acids, isoflavones and phytosterols. The cultures employed to make the yoghurts were single probiotic strains of Lactobacillus gasseri or Bifidobacterium infantis and, to achieve a short production time, a two-stage fermentation procedure was used with Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus providing the rapid acidification. Yoghurts containing counts of >1.0×108 cfu mL−1 of the individual probiotics and high counts of the traditional species from yoghurt were awarded overall scores for sensory acceptability >4.0 out of 5.0; the nutraceuticals appeared to have no adverse effect on flavour. Storage trials at 5 °C showed that the viability of the probiotic cultures was retained over 15 days.  相似文献   

10.
The aim of this study was to monitor viability of probiotic Lactobacillus paracasei NFBC 338 during: (a) two-stage yoghurt fermentation with starter cultures Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus, (b) following spray drying, and (c) during storage for 42 days. During the initial fermentation phase (10 h), probiotic Lactobacillus numbers increased 7-fold to 3.9 × 109 cfu g?1 and these numbers were maintained during fermentation for a further 3 h in the presence of the yoghurt starters. Following spray-drying, the probiotic culture survived best, followed by S. thermophilus and L. delbrueckii subsp. bulgaricus (yielding 3.4 × 108, 1.2 × 108 and 4.0 × 105 cfu g?1 powder, respectively). L. paracasei NFBC 338 and S. thermophilus were stable during storage at 4 °C and 15 °C (for 42 days) with viable counts exceeding 107 cfu g?1, while viability of L. delbrueckii subsp. bulgaricus decreased considerably throughout storage.  相似文献   

11.
The use of different inocula in the milk‐to‐yoghurt transformation influences the kinetics of the fermentation process. The aim of this work was to study the kinetics induced by Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (Lb–St). The milk‐to‐yoghurt transformation showed no delay in the production of lactic acid for yoghurt produced using Lactobacillus johnsonii with S. thermophilus (La1–St) or Lactobacillus casei with S. thermophilus (Lc1–St); the delays were 20–70 min and 40–80 min, respectively. The absence of delay was 1.0/min (Lb–St) as compared with 0.015/min (La1–St) and 0.7/min (Lc1–St). The kinetics was fitted using second‐order reaction.  相似文献   

12.
A set-type fermented milk manufactured from goat's milk was developed. Optimal curd tension was achieved by supplementation of milk with skim milk powder and whey protein concentrate (WPC). Milk was fermented employing a commercial probiotic starter culture (ABT-2), which contained Streptococcus thermophilus ST-20Y, Lactobacillus acidophilus LA-5, and Bifidobacterium BB-12. Supplementation of milk with 3% WPC reduced fermentation time by 2 h due to the increase in viable counts of S. thermophilus and Bifidobacterium by 0.3 and 0.7 log units, respectively. Addition of WPC increased the protein content (1%) as well as potassium and magnesium content (0.3 and 0.02 g kg−1, respectively). Increase of the protein content led to an increase in the apparent viscosity and gel firmness of the product, and at the same time whey syneresis was reduced. As a consequence, the product received a high score for appearance, taste, aroma, texture and overall acceptance.  相似文献   

13.
Lata Ramchandran 《LWT》2010,43(1):146-152
This study examined the influence of Raftiline HP®, added at the rate of 1, 2 and 3 g 100 mL−1 to reconstituted skim milk, on the growth and biochemical activities of selected strains of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus casei, Lactobacillus acidophilus and Bifidobacterium longum. The growth of B. longum and S. thermophilus was improved in reconstituted skim milk (RSM) containing 1 g 100 mL−1 Raftiline HP®. All the organisms except for S. thermophilus produced more lactic acid and acetic acid in the presence of Raftiline HP® than in the control. L. acidophilus and B. longum showed improvement in the proteolytic capabilities at all the three levels of Raftiline HP® addition. L. delbrueckii ssp. bulgaricus showed maximum percent ACE inhibition in RSM containing 2 g 100 mL−1 Raftiline HP® while B. longum exhibited this potential in RSM containing 3 g 100 mL−1 Raftiline HP®. All organisms, except L. delbrueckii ssp. bulgaricus, however, showed improvement in the α-glucosidase inhibitory activity in RSM containing Raftiline HP®.  相似文献   

14.
The carbonation of pasteurised milk was evaluated as a method for improving bacterial viability in fermented milk added with probiotic bacteria (Lactobacillus acidophilus and/or Bifidobacterium bifidum). The behaviour of microorganisms during fermentation and cold storage, and the biochemical and sensory properties of the products were assessed. In AT (Streptococcus thermophilus/L. acidophilus) and ABT (S. thermophilus/L. acidophilus/B. bifidum) products, the fermentation times to decrease the pH to 5 were significantly lowered when CO2 or lactic acid was added to milk. The higher acidity levels of carbonated (as a result of production of carbonic acid) and lactic acidified samples enhanced growth and metabolic activity of the starter during fermentation and was the reason for this reduction in incubation time. Cell counts of S. thermophilus, L. acidophilus and B. bifidum gradually decreased through the cold storage of carbonated and non-acidified fermented milk, although the counts were always higher than 106 viable cells g−1. The CO2 did not exert any influence on the viability of S. thermophilus and L. acidophilus in AT fermented milk stored at 4°C but the presence of B. bifidum and CO2 in ABT-type products was associated with lower viability of L. acidophilus during the refrigerated storage. The higher acetate concentrations of ABT products made with non-acidified milk as compared with the carbonated products could have contributed to major survival of L. acidophilus in the former. The use of milk acidified with CO2 had no detrimental effects on the sensory properties of ABT fermented milk. Therefore, we concluded that the carbonation of pasteurised milk prior to the starter addition could be satisfactorily used to reduce the manufacture time of fermented milk.  相似文献   

15.
《Journal of dairy science》1996,79(6):943-955
Six Lactobacillus acidophilus, 5 Bifidobacterium, and 6 Streptococcus thermophilus strains were studied for characteristics that are important to activity and stability in unfermented fluid milk products. Speciation, strain relatedness, frozen concentrate stability, bile sensitivity, and lactase activity were evaluated. The microbiological stability of a culture-containing fluid milk product was also determined. Two of the bifidobacteria cultures contained >1 strain. Some strains were shown to be closely related or identical by pulsed-field gel electrophoresis of fragmented chromosomal DNA. Selective media that distinguished among all 3 added genera were identified. All lactobacilli and most of the bifidobacteria were resistant to bile concentrations varying from 1 to 3%, and all streptococci were sensitive to bile. Lactase activities were highest for S. thermophilus strains, supporting use of this species in fluid milk and dairy products to aid in the digestion of lactose by consumers. The experimental product evaluated in this study contained 107 cfu/ml of both L. acidophilus and Bifidobacterium spp. and 5 × 107 cfu/ml of S. thermophilus. Lactic, but not psychrotrophic, populations were fairly stable during storage. The results suggest that milk formulated with high concentrations of three different genera of probiotic bacteria can be manufactured with commercial strains.  相似文献   

16.
A screening among five lactic acid bacteria, used alone or in combination, led to select a mixed starter (Streptococcus thermophilus CR12, Lactobacillus casei LC01, Lactobacillus helveticus PR4, Lactobacillus plantarum 1288) capable to produce a fermented goats’ milk containing γ-aminobutyric acid (GABA) and angiotensin-I converting enzyme (ACE)-inhibitory peptides. The fermented milk was characterized by cell counts of lactic acid bacteria not lower than 7.0 log cfu g−1, even after 45 days of storage at 4 °C. Fermentation of goats’ milk resulted in the production of ca. 28 mg kg−1 of GABA. Furthermore the fermented goats’ milk had an in vitro ACE-inhibitory activity of ca. 73%. Prolonged cold storage did not significantly affect both the concentration of GABA and the ACE-inhibitory activity. Moreover, the taurine content did not significantly vary during both fermentation and the entire storage period.  相似文献   

17.
Lactobacillus delbrueckii subsp. lactis R0187, Lactobacillus helveticus R0052, Lactobacillus rhamnosus R0011 and Bifidobacterium longum R0175 were examined for their ability to grow in combination with Streptococcus thermophilus cultures in milk and a laboratory soy beverage (LSB; both standardized to 4.5% protein and 2.3% fat). Strains R0011 and R0187 did not rapidly acidify the soy beverage despite good growth rates on soy carbohydrates. The S. thermophilus populations in the LSB were similar to that of milk even though milk had 30% more buffering capacity. In milk but not in soy, symbiosis with respect to acidification rate was observed between S. thermophilus and L. helveticus or B. longum. The populations of L. helveticus in the fermented products were similar in pure cultures or in the presence of the streptococci. However B. longum did not compete well in the mixed culture. Fermentation conditions varied as a function of the ability of S. thermophilus strains to acidify media to a pH of 4.65 (between 8 and 24 h). The probiotic populations in the mixed culture were influenced by the S. thermophilus strain and by the time of fermentation. Variations in growth rates of the bacteria did not appear to be linked to differences in initial redox or α-amino nitrogen levels. Strain selection enabled the preparation of a mixed starter, probiotic-fermented soy beverage containing 1.1 × 108 CFU/mL of L. helveticus R0052, which represented approximately 13% of the total final population.  相似文献   

18.
The yield and chemical structures of exopolysaccharides (EPS) produced by many strains of Streptococcus thermophilus have been characterized. However, the kinetics (or production profile) for EPS during milk fermentation is not clear. In this study, we investigated whether any differences existed in the yield and molar mass of EPS when milk was fermented at the same acidification rate by 2 strains of S. thermophilus (St-143 and ST-10255y). The type of EPS produced by these 2 strains is different. Milk samples were analyzed for EPS concentration every 30 min during a fermentation period of 270 min (final pH 4.5) by using a modified quantification method, which was faster and validated for its recovery of added EPS. Rheological properties of milks during fermentation were also analyzed using small-strain dynamic oscillatory rheology. For the determination of molar mass, EPS extracts were isolated by ultrafiltration of whey obtained during fermentation of milk to pH values 5.2, 4.9, 4.7, and 4.5, and molar mass was analyzed using size-exclusion chromatography–multi-angle laser light scattering. During fermentation, both strains appeared to start producing significant amounts of EPS after about ~150 min, which corresponded to pH ~5.3, which was close to the point of gelation. During the remainder of the fermentation process (150–270 min), the EPS concentration from strains St-143 and ST-10255y significantly increased from 30 to 72 mg/L and from 26 to 56 mg/L, respectively. The quantity of EPS recovered by our modified method was estimated to represent ~60% of the total EPS added to milk. The molar mass of EPS produced by both strains appeared to slightly decrease during fermentation. At pH 5.2, EPS from St-143 and ST-10255y had molar masses of 2.9 × 106 and 1.4 × 106 g/mol, respectively, which decreased to 1.6 × 106 and 0.8 × 106 g/mol, respectively, when the pH of milk was 4.5. Distinct differences were apparent in the rheological properties of gels fermented by the 2 strains. At the end of fermentation, St-143 fermented milk had weaker gels with storage modulus (G′) value at pH 4.6 of 26 Pa, whereas gels made with ST-10255y were stiffer with a G′ value at pH 4.6 of 82 Pa. For St-143 gels, maximum loss tangent (LTmax) values were higher (0.50) and occurred earlier (at a higher pH value) than the LTmax values (0.46) for gels from ST-10255y strain. Because the fermentation conditions were identical for both strains, the observed changes in rheological properties could be due to the differences in chemical structures and molar mass of the EPS produced by these 2 S. thermophilus strains.  相似文献   

19.
This study aimed to optimize the rheological properties of probiotic yoghurts supplemented with skimmed milk powder (SMP), whey protein concentrate (WPC) and sodium caseinate (Na-Cn) by using an experimental design type simplex-centroid for mixture modeling. It included seven batches/trials: three were supplemented with each type of the dairy protein used, three corresponding to the binary mixtures and one to the ternary one in order to increase protein concentration in 1 g 100 g−1 of final product. A control experiment was prepared without supplementing the milk base. Processed milk bases were fermented at 42 °C until pH 4.5 by using a starter culture blend that consisted of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, and Bifidobacterium animalis subsp. lactis. The kinetics of acidification was followed during the fermentation period as well the physico-chemical analyses, enumeration of viable bacteria and rheological characteristics of the yoghurts. Models were adjusted to the results (kinetic responses, counts of viable bacteria and rheological parameters) through three regression models (linear, quadratic and cubic special) applied to mixtures. The results showed that the addition of milk proteins affected slightly acidification profile and counts of S. thermophilus and B. animalis subsp. lactis, but it was significant for L. delbrueckii subsp. bulgaricus. Partially-replacing SMP (45 g/100 g) with WPC or Na-Cn simultaneously enhanced the rheological properties of probiotic yoghurts taking into account the kinetics of acidification and enumeration of viable bacteria.  相似文献   

20.
Consumer demand for healthier, microbiologically safe and stable, higher quality and minimally processed foods has increased in the last decades, promoting the application of non-thermal process technologies. Ultrasound processing is gaining attention because of its potential for improving quality and safety while retaining product flavor, texture, color and nutrient composition. Recently, Alicyclobacillus acidoterrestris has been recognized by manufacturers and processors in the fruit industry as a new type of thermoacidophilic, endospore-forming spoilage bacterium for commercialized fruit juices that can withstand the high temperatures applied in pasteurization process and spoil them producing taint compounds. Based on the above, the present study was undertaken to investigate the separate and combined effect of ultrasound treatment operating at 26 kHz, 90 μm, 200 W for 5, 10, 15 min and heat stress (at 80 °C for 10 min) on the recovery of A. acidoterrestris spores in K broth adjusted to pH = 4.5 with 25% (w/v) citric acid at temperatures between 35 and 45 °C at population and individual spore level. At the population level, statistically significant differences in average lag time of A. acidoterrestris spores from different treatments at 35 and 45 °C have been found. After the applied ultrasound (at 100% Amplitude for 10 min) and heat shock (at 80 °C for 10 min), the average lag time of A. acidoterrestris spores at 35 °C (7.24 ± 0.34 h) and 45 °C (6.38 ± 0.18 h) has been shown to be longer compared to the control at 35 °C (5.68 ± 0.36 h) and at 45 °C (2.87 ± 0.19 h), while for this combination, the maximum specific growth rate was not significantly different from the control samples. Additionally, the findings of this study have shown that λ among individual spores was greatly variable when they were treated by ultrasound (at 100% Amplitude for 10 min) and/or thermal treatment (at 80 °C for 10 min). The application of ultrasound and thermal treatment resulted in a more pronounced effect on median lag phase duration (25.74 h) than the heat shock (11.63 h) and affected both the position and the spread of the λ distributions of A. acidoterrestris spores. This work would help to better assess and optimize the proposed combined treatments, since ultrasound and thermal treatments could work in a synergistic way on delaying the lag time of the tested bacterial spores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号