共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
当无线传感器网络部设在不同环境中时,需要提出新的算法以适应特殊环境,减少节点能量消耗;算法针对LEACH路由算法的局限性,提出了一种适用网络覆盖范围较大,节点间距离较远,需要远距离传输的路由算法;本算法利用节点到基站的距离因素,修改簇头阈值信息;并利用簇头竞争重新设定簇头,使剩余能量较高的节点成为簇头;同时,运用多跳的方式传输数据,这样可以适应远距离传输;仿真结果表明,相对LEACH算法,算法将节点死亡时间推后了300~400轮,网络存活周期延长了400轮左右,很明显的减少了网络的能量消耗,延长了网络的生存周期和稳定性。 相似文献
4.
5.
针对无线传感器网络(WSN)现有分簇路由协议中选举的簇头节点在监测区域内分布不均的问题,提出一种基于局部区域传感器网络节点分布数量控制簇头节点选举概率的算法HNDCRA。该算法通过对传感器网络检测区域的网格划分,计算出网格局部区域的传感器节点分布,并以此为依据确定传感器节点当选簇头的概率,来保证选举后每个网格都有簇头节点,且节点数量多的区域节点当选簇头概率较大,使得簇头随节点分布密度“均匀”,达到能耗均衡的目的。性能分析和仿真实验表明,与经典的LEACH协议相比,HNDCRA能够更好地将簇头“均匀”分布到网络区域,均衡全网能耗分布,提高能量利用率,从而延长网络生存时间。 相似文献
6.
7.
A. Jameer Basha S. Aswini S. Aarthini Yunyoung Nam Mohamed Abouhawwash 《计算机系统科学与工程》2023,44(2):1451-1466
Wireless Sensor Network (WSN) technology is the real-time application that is growing rapidly as the result of smart environments. Battery power is one of the most significant resources in WSN. For enhancing a power factor, the clustering techniques are used. During the forward of data in WSN, more power is consumed. In the existing system, it works with Load Balanced Clustering Method (LBCM) and provides the lifespan of the network with scalability and reliability. In the existing system, it does not deal with end-to-end delay and delivery of packets. For overcoming these issues in WSN, the proposed Genetic Algorithm based on Chicken Swarm Optimization (GA-CSO) with Load Balanced Clustering Method (LBCM) is used. Genetic Algorithm generates chromosomes in an arbitrary method then the chromosomes values are calculated using Fitness Function. Chicken Swarm Optimization (CSO) helps to solve the complex optimization problems. Also, it consists of chickens, hens, and rooster. It divides the chicken into clusters. Load Balanced Clustering Method (LBCM) maintains the energy during communication among the sensor nodes and also it balances the load in the gateways. The proposed GA-CSO with LBCM improves the lifespan of the network. Moreover, it minimizes the energy consumption and also balances the load over the network. The proposed method outperforms by using the following metrics such as energy efficiency, ratio of packet delivery, throughput of the network, lifetime of the sensor nodes. Therefore, the evaluation result shows the energy efficiency that has achieved 83.56% and the delivery ratio of the packet has reached 99.12%. Also, it has attained linear standard deviation and reduced the end-to-end delay as 97.32 ms. 相似文献
8.
9.
Modular redundancy and temporal redundancy are traditional techniques to increase system reliability. In addition to being used as temporal redundancy, with
technology advancements, slack time in a system can also be used by energy management schemes to save energy. In this paper,
we consider the combination of modular and temporal redundancy to achieve energy efficient reliable real-time service provided
by multiple servers. We first propose an efficient adaptive parallel recovery scheme that appropriately processes service requests in parallel to increase the number of faults that can be tolerated and
thus system reliability. Then we explore schemes to determine the optimal redundant configurations of the parallel servers to minimize system energy consumption for a given reliability goal or to maximize system reliability
for a given energy budget. Our analysis results show that small requests, optimistic approaches, and parallel recovery favor
lower levels of modular redundancy, while large requests, pessimistic approaches and restricted serial recovery favor higher
levels of modular redundancy.
相似文献
Daniel MosséEmail: |
10.
针对成簇路由协议中由节点负载不均引起的能量空洞问题,提出了一种基于新型聚类的负载均衡非均匀分层路由协议(NHRPNC)。首先,利用改进的LEACH协议阈值函数选举区头,并对网络进行合理的非均匀分区;其次,对每个区头运用新型聚类算法实现区内非均匀分簇;然后,在每个簇内采用四步簇首选择机制来周期性地选择簇首;最后,在簇间多跳通信时,采用动态权重的方式优化多跳路径。仿真结果表明,与低功耗自适应集簇分层(LEACH)协议、分布式能量均衡非均匀成簇(DEBUC)协议以及基于动态分区的无线传感器网络非均匀成簇(UCDP)协议相比,NHRPNC在网络生命周期方面可分别提高257.5,33.74和12.83个百分点,且具有良好的能耗均衡性。 相似文献
11.
12.
为了提高传感器节点的能量利用效率,延长系统的生命周期,针对LEACH协议在簇首选择策略上存在的不足,提出了一种新型的簇首选择机制LEACH-TE.该算法在重新计算最优簇首数的基础上,通过综合考虑节点的剩余能量和网络的平均能量等因素来优化簇首的选择.仿真实验结果表明,改进后的协议在延长网络生存时间、降低网络能耗和提高基站接收的数据量3个方面均表现出较好的性能. 相似文献
13.
提出一种基于簇结构的传感器网络数据聚集估算机制CASA(clustering-based approximate scheme for data aggregation).在保证用户对数据精确度需求的前提下,CASA 通过最小化网络通信开销以及协调节点间的负载均衡,有效地提高了估算机制的节能性能.CASA 采用最优的分簇规模参数,在基于分簇的网内聚集估算架构中能够最小化网络节点的总体通信开销.此外,CASA 考虑到部署区域感知数据变化率的差异性,采用自适应的误差分配方案来进一步降低网络节点的通信开销,维护节点间的负载均衡.模拟实验结果表明,CASA 估算机制能够显著地提升传感器网络网内数据聚集机制的节能性能,同时保证聚集数据的精确程度. 相似文献
14.
Energy efficiency of cloud data centers received significant attention recently as data centers often consume significant resources in operation. Most of the existing energy-saving algorithms focus on resource consolidation for energy efficiency. This paper proposes a simulation-driven methodology with the accurate energy model to verify its performance, and introduces a new resource scheduling algorithm Best-Fit-Decreasing-Power (BFDP) to improve the energy efficiency without degrading the QoS of the system. Both the model and the resource algorithm have been extensively simulated and validated, and results showed that they are effective. In fact, the proposed model and algorithm outperforms the existing resource scheduling algorithms especially under light workloads. 相似文献
15.
提出一种能量高效的数据收集和数据融合协议(CEDGAP),它基于分簇路由机制,在网络分簇形成之后加入了簇内节点度的控制机制,网络中将会产生一定数量的休眠节点和休眠区域,在数据传输阶段,这些休眠节点不发送数据,它们与处于同一休眠区域的节点在不同轮次间交替被唤醒并往簇头发送数据.文章分析了CEDGAP的影响因素以及协议的时间复杂度.NS-2仿真结果显示,与LEACH相比,CEDGAP提高了网络能耗负载均衡性能,延长了网络生命期. 相似文献
16.
17.
基于无线传感器网络中事件簇容错和能效的要求,本文给出多事件簇数据容错模式MED-FT。该模式首先利用剩余能量和事件可信度的积值,给出分布式簇头节点的选举方法;然后,提出了多事件簇重叠区域下节点的处理策略,并且建立了事件簇的数据容错补偿机制。仿真实验表明,具有数据容错模式的多事件簇不仅能获得更长的网络生存周期,并且能获得更好的数据正确性和容错性能。 相似文献
18.
19.
无线传感器网络簇头优化分簇算法及其性能仿真 总被引:4,自引:0,他引:4
基于对LEACH等算法的研究,提出一种传感器网络分簇算法——簇头优化分簇算法。它将节点周期性划分为数个在地理位置上分布均匀的“临时簇”,然后分别在每个临时簇内选择簇头;簇头选择时,遵循保护最低能量节点的原则,即要求所选簇头尽量靠近剩余能量最低的节点。仿真结果表明,与LEACH相比较,该算法能保证簇头较均匀分布在网络中,推迟第一个死亡节点出现的时间,同时也提高了基站接收的数据量。 相似文献