首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human milk fat contains 20–25% palmitic acid, and about 70% of the fatty acid is esterified to the 2-position of triglycerides. It was also reported that arachidonic acid (AA) accelerated the growth of preterm infants. Thus, we attempted the synthesis of 1,3-arachidonoyl-2-palmitoyl-glycerol by acidolysis of tripalmitin with AA using 1,3-specific Rhizopus delemar lipase. When a mixture of 10 g tripalmitin/AA (1∶5, w/w) and 0.7 g immobilized Rhizopus lipase was incubated at 40°C for 24 h with stirring, the AA content in glycerides reached 59 mol%. The immobilized lipase could be used five times without a decrease in the extent of acidolysis. Glycerides were extracted from the reaction mixture with n-hexane, and regiospecific analysis was performed. As a result, the AA contents at the 1,3- and 2-positions were 56.9 and 3.2 mol%, respectively. It was therefore confirmed that the fatty acids at the 1,3-positions of triglyceride were exchanged for AA. High-performance liquid chromatography showed that the contents of triarachidonin, 1,3-arachidonoyl-2-palmitoyl-glycerol, and 1(3)-arachidonoyl-2,3(1)-palmitoyl-glycerol were 7.3, 75.9, and 12.4 wt%, respectively.  相似文献   

2.
Pseudomonas sp. lipase (PS) was immobilized by adsorption technique onto glass beads and tested for its ability to synthesize geranyl acetate by transesterification with acetic anhydride as the acyl donor. Reactions were carried out inn-hexane containing 0.1 M geraniol, 0.1 M acetic anhydride, and 200 units of lipase PS. Enzyme load, effect of substrate concentration, added water, temperature, time course, organic solvent, pH memory, and enzyme reuse were studied. Yields of up to 96% were obtained with 200 units (approximately 11% w/w of reactants) of enzyme. Increasing amounts of geraniol inhibited lipase activity, while excess acyl donor concentration enhanced ester production. Yields as high as 97% were obtained at 50°C, 24 h incubation, with no added water. Solvents with logP values ≥3.0 showed the highest conversion yields. Solvent-free samples also performed well. The pH range of 4–9 gave good yields (92–98.4%). Enzyme reuse studies showed the lipase remained active after 15 runs.  相似文献   

3.
Commercial lipases were tested for the ability to hydrolyze palm olein in isooctane in a two-phase system. Lipase OF (from Candida rugosa) showed the highest specific activity of 209 U/mg protein where 1 U is the amount of lipase enzyme required to produce 1 μmol of fatty acid (as palmitic acid) per minute. The enzyme was adsorbed completely on Accurel EP 100 (particle size <200 μm) with 20.5% activity retained. The soluble and the immobilized lipase OF showed optimal activity at the same pH and temperature (pH 6.5–7.5 and 35°C). However, the immobilized lipase had a wider range of pH and higher temperature stability. Continuous hydrolysis of palm olein was performed in a packed-bed reactor with 656 U of immobilized enzyme. The substrate (20% palm olein in isooctane) and Tris/maleate buffer were fed concurrently at the flow rates of 0.08 and 0.04 mL/min, respectively. The system gave a degree of hydrolysis (DH) of 90–100% for up to 250 h. A more stable system allowing for more than 300 h operation at DH>95% was achieved by mixing the immobilized enzyme with 1000–1500 μm Accurel EP100 to increase the system porosity and continuous feeding of the aqueous phase recycling from the product mixture. A similar result was also obtained using 1007 U of the immobilized enzyme and 60% palm olein in isooctane fed at 0.06 mL/min.  相似文献   

4.
Pseudomonas sp. lipase PS was immobilized by adsorption and tested for its ability to catalyze the synthesis of citronellyl butyrate and geranyl caproate by transesterification in n-hexane. The reaction parameters investigated were: enzyme load, effect of substrate concentration, added water, temperature, time course, organic solvent, pH memory, and enzyme reuse. Yields as high as 96 and 99% were obtained for citronellyl butyrate and geranyl caproate, respectively, with 300 units (approx. 15% w/w of reactants) of lipase PS. Increasing amounts of terpene alcohol inhibited lipase activity, while excess acyl donor (triacylglycerol) concentration enhanced ester production. Optimal yields were obtained at temperatures from 30–50°C after 24-h incubation time. Yields of 90 and 99% were obtained for citronellyl and geranyl esters, respectively, with 2% added water. Solvents with log P values ≥ 2.5 showed the highest conversion yields. pH 7 and 6–8 seemed to be ideal for citronellyl butyrate and geraniol caproate, respectively. The lipase remained active after reusing 12 times.  相似文献   

5.
The lipase fromCandida rugosa has been shown to discriminate against erucic acid. Advantage of this property has been taken to produce trierucin from high-erucic acid rapeseed (HEAR) oil. A method has been developed for extracting erucic acid from the oil as dierucin and subsequently enzymatically converting it to trierucin. Unrefined HEAR oil was hydrolyzed with lipase fromC. rugosa to produce a mixture of free fatty acids and dierucin. Precipitation and filtration from cold ethanol gave 73% pure dierucin, free of fatty acids. This dierucin was treated in two ways to produce trierucin. First, in the presence of an immobilized lipase and a known amount of water, some trierucin is produced by interesterification. Second, a more efficient route to trierucin utilizedRhizopus arrhizus lipase to completely hydrolyze dierucin to erucic acid, which was then combined with an appropriate amount of dierucin in the presence of an immobilized lipase to produce trierucin in a quantitative yield. Partly presented at the AOCS Annual Meeting held in Toronto, May 10–14, 1992.  相似文献   

6.
An attempt was made to produce structured lipids containing essential fatty acid by acidolysis with 1,3-positional specificRhizopus delemar lipase. The lipase was immobilized on a ceramic carrier by coprecipitation with acetone and then was activated by shaking for 2 d at 30°C in a mixture of 5 g safflower or linseed oil, 10 g caprylic acid, 0.3 g water and 0.6 g of the immobilized enzyme. The activated enzyme was transferred into the same amount of oil/caprylic acid mixture without water, and the mixture was shaken under the same conditions as for the activation. By this reaction, 45–50 mol% of the fatty acids in oils were exchanged for caprylic acid, and the immobilized enzyme could be reused 45 and 55 times for safflower and linseed oils, respectively, without any significant loss of activity. The triglycerides were extracted withn-hexane after the acidolysis and then were allowed to react again with caprylic acid under the same conditions as mentioned above. When acidolysis was repeated three times with safflower oil as a starting material, the only products obtained were 1,3-capryloyl-2-linoleoylglycerol and 1,3-capryloyl-2-oleoyl-glycerol, with a ratio of 86∶14 (w/w). Equally, the products from linseed oil were 1,3-capryloyl-2-α-linolenoyl-glycerol, 1,3-caprylol-2-linoleoyl-glycerol, and 1,3-capryloyl-2-oleoly-glycerol (60∶22∶18, w/w/w). All fatty acids at the 1,3-positions in the original oils were exchanged for caprylic acid by the repeated acidolyses, and the positional specificity ofRhizopus lipase was also confirmed to be strict.  相似文献   

7.
J. Lu  L. Deng  K. Nie  F. Wang  T. Tan 《化学工程与技术》2012,35(12):2120-2124
The stability of the immobilized lipase from Candida sp. 99–125 during biodiesel production was investigated. The lipase was separately incubated in the presence of various reaction components such as soybean oil, oleic acid methyl ester, n‐hexane, water, methanol, and glycerol, or the lipase was stored at 60, 80, 100 and 120 °C. Thereafter the residual lipase activity was determined by methanolysis reaction. The results showed that the lipase was rather stable in the reaction media, except for methanol and glycerol. The stability study performed in a reciprocal shaker indicated that enzyme desorption from the immobilized lipase mainly contributed to the lipase inactivation in the water system. So the methanol and glycerol contents should be controlled more precisely to avoid lipase inactivation, and the immobilization method should be improved with regard to lipase desorption.  相似文献   

8.
A newly developed 1,3-positionally specific thermostable lipase from Fusarium heterosporum (named R275A lipase) was immobilized on Dowex WBA for the production of structured lipid by acidolysis of tripalmitin (PPP) with oleic acid (OA). The immobilized catalyst was fully activated by pretreatment at 50°C in a PPP/OA mixture containing 2% water. The pretreatment caused concomitant hydrolysis, but the hydrolysis was repressed using a substrate without water in the subsequent reactions. The optimal reaction conditions were determined as follows: A mixture of PPP/OA (1∶2, w/w) and 8% immobilized lipase catalyst was incubated at 50°C for 24 h with shaking at 130 oscillations/min. The acidolysis reached 50% under these conditions, and the contents of triolein, 1,3-dioleoyl-2-palmitoyl-glycerol, 1(3),2-dioleoyl-3(1)-palmitoyl-glycerol, 1(3),2-palmitoyl-3(1)-oleoyl-glycerol, 1,3-dipalmitoyl-2-oleoyl-glycerol, and PPP in the reaction mixture were 8, 36, 4, 28, 1, and 6 mol%, respectively. The stabilities of immobilized R275A lipase catalyst and two immobilized catalysts containing Rhizopus delemar or Rhizomucor miehei lipases were compared under the conditions mentioned above, with the catalysts being transferred to fresh substrate every 24 h. The half-life of the R275A lipase catalyst was 370 d, which was significantly longer than those of Rhizopus and Rhizomucor lipase catalysts.  相似文献   

9.
Hydroxy fatty acid (HFA) esters of long-chain alcohols, such as hydroxy stearates, have potential applications from lubricants to cosmetics. These esters were synthesized enzymatically to overcome the problems associated with chemical processes. An immobilized lipase, Rhizomucor miehei, was employed as catalyst in the esterification reaction between hydroxy-stearic acid as a source of HFA and monohydric fatty alcohols (C8–C18). The yields of esters were in the range of 82–90% by conducting the reactions at 65±2°C, 2–5 mm Hg pressure, and 10% lipase concentration. The products were analyzed by infrared spectroscopy, and some of their analytical characteristics were determined.  相似文献   

10.
Candida antarctica lipase is inactivated in a mixture of vegetable oil and more than 1∶2 molar equivalent of methanol against the total fatty acids. We have revealed that the inactivation was eliminated by three successive additions of 1∶3 molar equivalent of methanol and have developed a three-step methanolysis by which over 95% of the oil triacylglycerols (TAG) were converted to their corresponding methyl esters (ME). In this study, the lipase was not inactivated even though 2∶3 molar equivalent of methanol was present in a mixture of acylglycerols (AG) and 33% ME (AG/ME33). This finding led to a two-step methanolysis of the oil TAG: The first-step was conducted at 30°C for 12 h with shaking in a mixture of the oil, 1∶3 molar equivalent of methanol, and 4% immobilized lipase; the second-step reaction was done for 24 h after adding 2∶3 molar equivalent of methanol (36 h in total). The two-step methanolysis achieved more than 95% of conversion. When two-step reaction was repeated by transferring the immobilized lipase to a fresh substrate mixture, the enzyme could be used 70 cycles (105 d) without any decrease in the conversion. From the viewpoint of the industrial production of biodiesel fuel production, the two-step reaction was conducted using a reactor with impeller. However, the enzyme carrier was easily destroyed, and the lipase could be used only several times. Thus, we attempted flow reaction using a column packed with immobilized Candida lipase. Because the lipase packed in the column was drastically inactivated by feeding a mixture of AG/ME33 and 2∶3 molar equivalent of methanol, three-step flow reaction was performed using three columns packed with 3.0 g immobilized lipase. A mixture of vegetable oil and 1∶3 molar equivalent of methanol was fed into the first column at a constant flow rate of 6.0 mL/h. The eluate and 1∶3 molar equivalent of methanol were mixed and then fed into the second column at the same flow rate. The final step reaction was done by feeding a mixture of eluate from the second column and 1∶3 molar equivalent of methanol at the same flow rate. The ME content in the final-step eluate reached 93%, and the lipase could be used for 100 d without any decrease in the conversion.  相似文献   

11.
The hydrolysis of edible oil by immobilized lipases on novel support materials was investigated. Six hydrophobic polymers were studied with the following techniques: (i) determination of the surface area of each support by BET (Brunauer-Emmett-Teller) analysis of nitrogen adsorption isotherms; (ii) electron photomicrography; and (iii) measuring lipase activity by hydrolysis of olive oil with lipase fromCandida cylindracea immobilized on each support. A detailed structural analysis on one support also was carried out by mercury porosimetry. The composition and porosity of a support are more important than the surface area in determining activity for immobilized lipases. Furthermore, having selected the “most efficient” support, five lipases fromC. cylindracea, Rhizomucor miehei, andPseudomonas cepacia, were immobilized, and their hydrolytic activities were determined at several temperatures and pH values with olive oil and beef tallow as substrates in solvent-free systems. For each parameter, twelve successive 2.5-h hydrolysis reactions were conducted on a laboratory-scale under batch conditions. Lipase AY fromC. cylindracea had the highest hydrolytic activity, in the range of 30–50°C at pH 5.5 with olive oil as the substrate. For beef tallow, lipase PS, fromP. cepacia, displayed the highest activity at 50°C and pH 7.  相似文献   

12.
Lipase-catalyzed interesterification between fish oil and medium-chain TAG has been investigated in a packedbed reactor with a commercially immobilized enzyme. The enzyme, a Thermomyces lanuginosa lipase immobilized on silica by granulation (lipozyme TL IM; Novozymes A/S, Bagsvaerd, Denmark), has recently been developed for fat modification. This study focuses on the new characteristics of the lipase in a packed-bed reactor when applied to interesterification of TAG. The degree of reaction was strongly related to the flow rate (residence time) and temperature, whereas formation of hydrolysis by-products (DAG and FFA) were only slightly affected by reaction conditions. The degree of reaction reached equilibrium at 30–40 min residence time, and the most suitable temperature was 60°C or higher with respect to the maximal degree of reaction. The lipase was stable in a 2-wk continuous operation without adjustment of water content or activity of the column and the substrate mixture.  相似文献   

13.
The purpose of this work was to add n-3 polyunsaturated fatty acids (PUFA) into the acylglycerols of borage oil. The acidolysis reaction between borage oil and n-3 PUFA was carried out with lipase (Lipozyme IM-60) in organic solvent. The effects of temperature, solvent, and water content on the reaction product were investigated. For the acidolysis reaction between acylglycerols (product of the selective hydrolysis of borage oil, catalyzed by immobilized Candida rugosa lipase) and n-3 PUFA, the total content of n-3 and n-6 PUFA in acylglycerols was 72.8% after a reaction time of 18 h. The contents of γ-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid were 26.5, 19.8, and 18.1%, respectively. By properly controlling the reaction time, acylglycerols with ca. 70–72% PUFA and a ratio of n-3 PUFA to n-6 PUFA from 0–1.09 can be obtained.  相似文献   

14.
Geranyl acetate is an important flavor and fragrance compound. Two immobilizedCandida antarctica lipases, SP382 and SP435, were investigated for their use in the synthesis of geranyl acetate by direct esterification. Yields between 95 and 99% molar conversion were obtained with 2 and 15% (w/w reactants) of SP435 and SP382 lipases, respectively. Optimum yields were obtained at 0.1M acetic acid and 0.12M geraniol after 16-h incubation. No inhibitory effect was observed at increasing concentrations of geraniol. Addition of 60% (w/w reactants) water led to 50 and 60% reduction in the esterification activity of SP382 and SP435 lipases, respectively. The best yields were obtained at added water contents between 0–5% (w/w reactants). Solvents with a logP value of 0.85 or more gave reaction yields of more than 80% molar conversion. Higher logP values did not necessarily lead to higher conversion yields. The immobilized lipase SP382 was still active after reusing ten times in the direct esterification reaction.  相似文献   

15.
Candida cylindracea lipase was entrapped in organic-inorganic hybrid sol-gel polymers made from tetramethoxysilane (TMOS) and alkyltrimethoxysilanes. By forming the gels within the pores of a nonwoven polyester fabric, a novel immobilized biocatalyst in sheet configuration based on sol-gel en-trapment of the enzyme was obtained. Lipases immobilized in sol-gel matrices efficiently catalyzed the direct esterification reaction of geraniol and acetic acid in anhydrous hexane to produce geranyl acetate. The optimal formulation of the sol-gel solution for enzyme immobilization was at a 20∶1 molar ratio of water to total silane; a 4∶1 molar ratio of propyltrimethoxysilane to TMOS; hydrolysis time at 30 min; and enzyme loading of 200 mg lipase/g gel. Under these conditions, protein immobilization efficiency was 91%, and the specific activity of the immobilized enzyme was 2.6 times that of the free enzyme. Excellent thermal stability was found for the immobilized enzyme in dry form or in hexane solution in the presence of acetic acid, in which case severe inactivation of free enzyme was observed. The immobilized enzyme retained its activity after heating at 70°C for 2 h, whereas the free enzyme lost 80% of its activity.  相似文献   

16.
A mixture of oil/ethanol (1∶3, w/w) was shaken at 30°C with 4% immobilized Candida antarctica lipase by weight of the reaction mixture. The reaction regiospecifically converted FA at the 1- and 3-positions to FA ethyl esters, and the lipase acted on C14−C24 FA to a similar degree. The content of 2-MAG reached a maximum after 4 h; the content was 28–29 mol% based on the total amount of FA in the reaction mixture at 59–69% ethanolysis. Only 2-MAG were present in the reaction mixture during the first 4 h, and 1(3)-MAG were detected after 7 h. After removal of ethanol from the 4-h reaction mixture by evaporation, 2-MAG were fractionated by silica gel column chromatography. The contents of FA in the 2-MAG obtained by ethanolysis of several oils coincided well with FA compositions at the 2-position, which was analyzed by Grignard degradation. It was shown that ethanolysis of oil with C. antarctica lipase can be applied to analysis of FA composition at the 2-position in TAG.  相似文献   

17.
An extracellular lipase from the fungusPythium ultimum was active in an invert [water-in-oil] emulsion consisting of 4% water emulsified into edible oils with taurocholic acid as the surfactant. The pH range for optimum lipolytic activity was 7.5–8.5, and the optimum temperature for activity was 45°C. Specific activity of the purified lipase was 919.5 μmol/min/mg protein in the invert emulsion. Water content of the invert emulsion influenced activity of the lipase differently, depending on the substrate. The rate of olive oil hydrolysis with thePythium lipase decreased with time, possibly due to inactivation of the enzyme and inhibition by free fatty acid products of the reaction. Total hydrolysis of olive oil by thePythium lipase was compared with that by lipases fromCandida rugosa andRhizopus arrhizus in the invert emulsion. Hydrolysis essentially ceased within 24 h or less for the lipases from each source. However, the addition of aqueous solution at 8 h from the beginning of incubation stimulated hydrolysis byC. rugosa andR. arrhizus lipases by 1.8-fold and 2.5-fold, respectively, but not by theP. ultimum lipase, over corresponding controls after 48 h.  相似文献   

18.
Acid oil is a by-product in the neutralization step of vegetable oil refining and is an alternative source of biodiesel fuel. A model substrate of acid oil, which is composed of TAG and FFA, was used in experiments on the conversion to FAME by immobilized Candida antarctica lipase. FFA in the mixture of TAG/FFA were efficiently esterified with methanol (MeOH), but the water generated by the esterification significantly inhibited methanolysis of TAG. We thus attempted to convert a mixture of TAG/FFA to FAME by a two-step process comprising methyl esterification of FFA and methanolysis of TAG by immobilized C. antarctica lipase. The first reaction was conducted at 30°C in a mixture of TAG/FFA (1∶1, wt/wt) and 10 wt% MeOH using 0.5 wt% immobilized lipase, resulting in efficient esterification of FFA. The reaction mixture after 24 h was composed of 49.1 wt% TAG, 1.3 wt% FFA, 49.1 wt% FAME, and negligible amounts of DAG and MAG (<0.5 wt%). The reaction mixture was then dehydrated and used as a substrate for the second reaction, which was conducted at 30°C in a solution of the dehydrated mixture and 5.5 wt% MeOH using 6 wt% immobilized lipase. The activity of the lipase increased gradually when the reaction was repeated by transferring the enzyme to a fresh substrate mixture. The activity reached a maximum after 6 cycles, and the content of FAME achieved was >98.5 wt% after a 24-h reaction. The immobilized lipase was very stable in the first-and second-step reactions and could be used for >100 d without significant loss of activity.  相似文献   

19.
Lipase was extracted and purified from Pseudomonas aeruginosa SRT9. Culture conditions were optimized and highest lipase production amounting to 147.36 U/ml was obtained after 20 h incubation. The extracellular lipase was purified on Mono QHR5/5 column, resulting in a purification factor of 98-fold with specific activity of 12307.81 U/mg. Lipase was immobilized on tri (4-formyl phenoxy) cyanurate to form Schiff’s base. An immobilization yield of 85% was obtained. The native and immobilized lipases were used for catalyzing the hydrolysis of olive oil in aqueous medium. Comparative study revealed that immobilized lipase exhibited a shift in optimal pH from 6.9 (free lipase) to 7.5 and shift in optimal temperature from 55 °C to 70 °C. The immobilized lipase showed 20–25% increase in thermal stability and retained 75% of its initial activity after 7 cycles. It showed good stability in organic solvents especially in 30% acetone and methanol. Enzyme activity was decreased by ∼60% when incubated with 30% butanol. The kinetic studies revealed increase in K M value from 0.043 mM (native) to 0.10 mM for immobilized lipase. It showed decrease in the V max of immobilized enzyme (142.8 μmol min−1 mg−1), suggesting enzyme activity decrease in the course of covalent binding. The immobilized lipase retained its initial activity for more than 30 days when stored at 4 °C in Tris-HCl buffer pH 7.0 without any significant loss in enzyme activity.  相似文献   

20.
Lipase B (GCB) produced by the fungus Geotrichum candidum CMICC 335426 is known for its high specificity towards cis-Δ9 unsaturated fatty acids. The wild-type lipase (not genetically modified) as well as the lipase obtained by heterologous expression of the corresponding gene in Pichia pastoris (genetically modified) were studied in a process aiming to produce an oil containing very little saturated fatty acids (SAFA). The approach described in this paper is based on the selective hydrolysis of sunflower oil (12% SAFA) using the G. candidum type B (GCB) lipases. Depending on the lipase input, up to 60% w/w degree of hydrolysis was obtained within 6–8 h. Because of the high specificity of the GCB lipases (specificity factor ∼30), the level of unsaturates in the free fatty acid fraction was >99% w/w. In contrast with literature data, no loss of specificity was observed, even at the highest degree of hydrolysis obtained. Though both GCB lipases are stable at 30°C, the rate of hydrolysis decreased considerably during the process. Product inhibition as well as time-dependent deactivation (half-life ≈2 h) were shown to be involved. After separation of the oil phase, the unsaturated free fatty acids were recovered from the mixture by evaporation and reconverted to triglycerides by enzymatic esterification with glycerol. Because the GCB lipases have a very low efficiency for esterification, this reaction was carried out with immobilized Rhizomucor miehei lipase. Under continuous removal of the water generated during the process, >95% triglycerides were obtained in less than 24 h. Standard deodorization resulted in an odorless, colorless, and tasteless oil with less than 1% SAFA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号