首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
It is not known whether psychophysical performance depends primarily on small numbers of neurons optimally tuned to specific visual stimuli, or on larger populations of neurons that vary widely in their properties. Tuning bandwidths of single cells can provide important insight into this issue, yet most bandwidth measurements have been made using suprathreshold visual stimuli, whereas psychophysical measurements are frequently obtained near threshold. We therefore examined the directional tuning of cells in the middle temporal area (MT, or V5) using perithreshold, stochastic motion stimuli that we have employed extensively in combined psychophysical and physiological studies. The strength of the motion signal (coherence) in these displays can be varied independently of its direction. For each MT neuron, we characterized the directional bandwidth by fitting Gaussian functions to directional tuning data obtained at each of several motion coherences. Directional bandwidth increased modestly as the coherence of the stimulus was reduced. We then assessed the ability of MT neurons to discriminate opposed directions of motion along six equally spaced axes of motion spanning 180 degrees. A signal detection analysis yielded neurometric functions for each axis of motion, from which neural thresholds could be extracted. Neural thresholds remained surprisingly low as the axis of motion diverged from the neuron's preferred-null axis, forming a plateau of high to medium sensitivity that extended approximately 45 degrees on either side of the preferred-null axis. We conclude that directional tuning remains broad in MT when motion signals are reduced to near-threshold values. Thus directional information is widely distributed in MT, even near the limits of psychophysical performance. These observations support models in which relatively large numbers of signals are pooled to inform psychophysical decisions.  相似文献   

2.
Extrastriate cortical area MT is thought to process behaviorally important visual motion signals. Psychophysical studies suggest that visual motion signals may be analyzed by multiple mechanisms, a "first-order" one based on luminance, and a "second-order" one based upon higher level cues (e.g. contrast, flicker). Second-order motion is visible to human observers, but should be invisible to first-order motion sensors. To learn if area MT is involved in the analysis of second-order motion, we measured responses to first- and second-order gratings of single neurons in area MT (and in one experiment, in area V1) in anesthetized, paralyzed macaque monkeys. For each neuron, we measured directional and spatio-temporal tuning with conventional first-order gratings and with second-order gratings created by spatial modulation of the flicker rate of a random texture. A minority of MT and V1 neurons exhibited significant selectivity for direction or orientation of second-order gratings. In nearly all cells, response to second-order motion was weaker than response to first-order motion. MT cells with significant selectivity for second-order motion tended to be more responsive and more sensitive to luminance contrast, but were in other respects similar to the remaining MT neurons; they did not appear to represent a distinct subpopulation. For those cells selective for second-order motion, we found a correlation between the preferred directions of first- and second-order motion, and weak correlations in preferred spatial frequency. These cells preferred lower temporal frequencies for second-order motion than for first-order motion. A small proportion of MT cells seemed to remain selective and responsive for second-order motion. None of our small sample of V1 cells did. Cells in this small population, but not others, may perform "form-cue invariant" motion processing (Albright, 1992).  相似文献   

3.
We recorded the activity of single neurons in the middle temporal (MT) and middle superior temporal (MST) visual areas in two macaque monkeys while the animals performed a smooth pursuit target selection task. The monkeys were presented with two moving stimuli of different colors and were trained to initiate smooth pursuit to the stimulus that matched the color of a previously given cue. We designed these experiments so that we could separate the component of the neuronal response that was driven by the visual stimulus from an extraretinal component that predicted the color or direction of the selected target. We found that for all cells in MT and MST the response was primarily determined by the visual stimulus. However, 14% (8 of 58) of MT neurons and 26% (22 of 84) of MST neurons had a small predictive component that was significant at the P < or = 0.05 level. In some cells, the predictive component was clearly related to the color of the intended target, but more often it was correlated with the direction of the target. We have previously documented a systematic shift in the latency of smooth pursuit that depends on the relative direction of motion of the two stimuli. We found that neither the latency nor the amplitude of neuronal responses in MT or MST was correlated with behavioral latency. These results are consistent with a model for target selection in which a weak selection bias for the intended target is amplified by a competitive network that suppresses motion signals related to the nonintended stimulus. It is possible that the predictive component of neuronal responses in MT and MST contributes to the selection bias. However, the strength of the selection bias in MT and MST is not sufficient to account for the high degree of selectivity shown by pursuit behavior.  相似文献   

4.
As a rat navigates through space, head-direction cells provide an ongoing signal of its momentary directional heading. This directional signal is thought to be generated, in part, by a dead-reckoning mechanism that uses angular motion information to constantly update the directional representation. This study investigated what kinds of angular motion information might be used for dead reckoning. Anterior thalamic head-direction cells were recorded from rats in a rotatable, cylindrical chamber, which could independently deliver visual motion cues and vestibular cues. Results suggest that both of these angular motion cues have an influence on head-direction cells and may thus be used for dead reckoning. The authors conclude that vestibular and visual movement cues work interactively, along with visual landmarks and motor signals, to determine the directional frame of reference. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

5.
To test the effects of complex visual motion stimuli on the responses of single neurons in the middle temporal visual area (MT) and the medial superior temporal area (MST) of the macaque monkey, we compared the response elicited by one object in motion through the receptive field with the response of two simultaneously presented objects moving in different directions through the receptive field. There was an increased response to a stimulus moving in a direction other than the best direction when it was paired with a stimulus moving in the best direction. This increase was significant for all directions of motion of the non-best stimulus and the magnitude of the difference increased as the difference in the directions of the two stimuli increased. Similarly, there was a decreased response to a stimulus moving in a non-null direction when it was paired with a stimulus moving in the null direction. This decreased response in MT did not reach significance unless the second stimulus added to the null direction moved in the best direction, whereas in MST the decrease was significant when the second stimulus direction differed from the null by 90 degrees or more. Further analysis showed that the two-object responses were better predicted by taking the averaged response of the neuron to the two single-object stimuli than by summation, multiplication, or vector addition of the responses to each of the two single-object stimuli. Neurons in MST showed larger modulations than did neurons in MT with stimuli moving in both the best direction and in the null direction and the average better predicted the two-object response in area MST than in area MT. This indicates that areas MT and MST probably use a similar integrative mechanisms to create their responses to complex moving visual stimuli, but that this mechanism is further refined in MST. These experiments show that neurons in both MT and MST integrate the motion of all directions in their responses to complex moving stimuli. These results with the motion of objects were in sound agreement with those previously reported with the use of random dot patterns for the study of transparent motion in MT and suggest that these neurons use similar computational mechanisms in the processing of object and global motion stimuli.  相似文献   

6.
We have used optical imaging based on intrinsic signals to explore the functional architecture of owl monkey area MT, a cortical region thought to be involved primarily in visual motion processing. As predicted by previous single-unit reports, we found cortical maps specific for the direction of moving visual stimuli. However, these direction maps were not distributed uniformly across all of area MT. Within the direction-specific regions, the activation produced by stimuli moving in opposite directions overlapped significantly. We also found that stimuli of differing shapes, moving in the same direction, activated different cortical regions within area MT, indicating that direction of motion is not the only parameter according to which area MT of owl monkey is organized. Indeed, we found clear evidence for a robust organization for orientation in area MT. Across all of MT, orientation preference changes smoothly, except at isolated line- or point-shaped discontinuities. Generally, paired regions of opposing direction preference were encompassed within a single orientation domain. The degree of segregation in the orientation maps was 3-5 times that found in direction maps. These results suggest that area MT, like V1 and V2, has a rich and multidimensional functional organization, and that orientation, a shape variable, is one of these dimensions.  相似文献   

7.
The floccular lobe of the monkey is critical for the generation of visually-guided smooth eye movements. The present experiments reveal physiological correlates of the directional organization in the primate floccular lobe by examining the selectivity for direction of eye motion and visual stimulation in the firing of individual Purkinje cells (PCs) and mossy fibers. During tracking of sinusoidal target motion along different axes in the frontoparallel plane, PCs fell into two classes based on the axis that caused the largest modulation of simple-spike firing rate. For "horizontal" PCs, the response was maximal during horizontal eye movements, with increases in firing rate during pursuit toward the side of recording (ipsiversive). For "vertical" PCs, the response was maximal during eye movement along an axis just off pure vertical, with increases in firing rate during pursuit directed downward and slightly contraversive. During pursuit of target motion at constant velocity, PCs again fell into horizontal and vertical classes that matched the results from sinusoidal tracking. In addition, the directional tuning of the sustained "eye velocity" and transient "visual" components of the neural responses obtained during constant velocity tracking were very similar. PCs displayed very broad tuning approximating a cosine tuning curve; the mean half-maximum bandwidth of their tuning curves was 170-180 degrees. Other cerebellar elements, related purely to eye movement and presumed to be mossy fibers, exhibited tuning approximately 40 degrees narrower than PCs and had best directions that clustered around the four cardinal directions. Our data indicate that the motion signals encoded by PCs in the monkey floccular lobe are segregated into channels that are consistent with a coordinate system defined by the vestibular apparatus and eye muscles. The differences between the tuning properties exhibited by PCs compared with mossy fibers indicate that a spatial transformation occurs within the floccular lobe.  相似文献   

8.
1. The middle temporal area (MT) projects to the intraparietal sulcus in the macaque monkey. We describe here a discrete area in the depths of the intraparietal sulcus containing neurons with response properties similar to those reported for area MT. We call this area the physiologically defined ventral intraparietal area, or VIP. In the present study we recorded from single neurons in VIP of alert monkeys and studied their visual and oculomotor response properties. 2. Area VIP has a high degree of selectivity for the direction of a moving stimulus. In our sample 72/88 (80%) neurons responded at least twice as well to a stimulus moving in the preferred direction compared with a stimulus moving in the null direction. The average response to stimuli moving in the preferred direction was 9.5 times as strong as the response to stimuli moving in the opposite direction, as compared with 10.9 times as strong for neurons in area MT. 3. Many neurons were also selective for speed of stimulus motion. Quantitative data from 25 neurons indicated that the distribution of preferred speeds ranged from 10 to 320 degrees/s. The degree of speed tuning was on average twice as broad as that reported for area MT. 4. Some neurons (22/41) were selective for the distance at which a stimulus was presented, preferring a stimulus of equivalent visual angle and luminance presented near (within 20 cm) or very near (within 5 cm) the face. These neurons maintained their preference for near stimuli when tested monocularly, suggesting that visual cues other than disparity can support this response. These neurons typically could not be driven by small spots presented on the tangent screen (at 57 cm). 5. Some VIP neurons responded best to a stimulus moving toward the animal. The absolute direction of visual motion was not as important for these cells as the trajectory of the stimulus: the best stimulus was one moving toward a particular point on the face from any direction. 6. VIP neurons were not active in relation to saccadic eye movements. Some neurons (10/17) were active during smooth pursuit of a small target. 7. The predominance of direction and speed selectivity in area VIP suggests that it, like other visual areas in the dorsal stream, may be involved in the analysis of visual motion.  相似文献   

9.
This study investigated whether rhesus monkeys show evidence of metacognition in a reduced, visual oculomotor task that is particularly suitable for use in fMRI and electrophysiology. The 2-stage task involved punctate visual stimulation and saccadic eye movement responses. In each trial, monkeys made a decision and then made a bet. To earn maximum reward, they had to monitor their decision and use that information to bet advantageously. Two monkeys learned to base their bets on their decisions within a few weeks. We implemented an operational definition of metacognitive behavior that relied on trial-by-trial analyses and signal detection theory. Both monkeys exhibited metacognition according to these quantitative criteria. Neither external visual cues nor potential reaction time cues explained the betting behavior; the animals seemed to rely exclusively on internal traces of their decisions. We documented the learning process of one monkey. During a 10-session transition phase, betting switched from random to a decision-based strategy. The results reinforce previous findings of metacognitive ability in monkeys and may facilitate the neurophysiological investigation of metacognitive functions. (PsycINFO Database Record (c) 2011 APA, all rights reserved)  相似文献   

10.
Extracellular recordings obtained from the extrastriate cortex of the California ground squirrel, a diurnal sciurid, show that large receptive fields and a strong direction selectivity are present in the middle lateral area (ML) and the lateral area (L), located laterally to V2 and V3. Direction selectivity was tested by presenting stimuli of varying dimensions, shapes and speeds at different locations in the visual field. Most cells in ML and L (84%) were direction selective, with a preference for fast speeds, indicating that these areas share a role in motion processing. Areas ML and L may be homologous to area MT or may represent a case of homoplasia. A directional anisotropy for motion towards the vertical meridian was found in ML and L cells, suggesting that these areas may be involved in detecting predators and other moving objects coming from the periphery, rather than in processing flow fields caused by forward locomotion, for which a centrifugal bias might be expected.  相似文献   

11.
1. To understand roles played by two cortical motor areas, the presupplementary motor area (pre-SMA) and supplementary motor area (SMA), in changing planned movements voluntarily, cellular activity was examined in two monkeys (Macaca fuscata) trained to perform an arm-reaching task in which they were asked to press one of two target buttons (right or left) in three different task modes. 2. In the first mode (visual), monkeys were visually instructed to result and press either a right or left key in response to a forth coming trigger signal. In the second mode (stay), monkeys were required to wait for the trigger signal and press the same target key as pressed in preceding trials. In the third mode (shift), a 50 Hz auditory cue instructed the monkey to shift the target of the future reach from the previous target to the previous nontarget. 3. While the monkeys were performing this task, we recorded 399 task-related cellular activities from the SMA and the pre-SMA. Among them, we found a group of neurons that exhibited activity changes related specifically to shift trials (shift-related cells). The following properties characterized these 112 neurons. First, they exhibited activity changes after the onset of the 50-Hz auditory cue and before the movement execution when the monkeys were required to change the direction of forthcoming movement. Second, they were not active when the monkeys pressed the same key without changing the direction of the movements. Third, they were not active when the monkeys received the 50-Hz auditory cue but failed to change the direction of the movements by mistake. These observations indicate that the activity of shift-related cells is related to the redirection of the forthcoming movements, but not to the auditory instruction itself or to the location of the target key or the direction of the forthcoming movements. 4. Although infrequently, monkeys made errors in the stay trials and changed directions of the reach voluntarily. In that case, a considerably high proportion of shift-related neurons (12 of 19) exhibited significant activity changes long before initiation of the reach movement. These long-lasting activities were not observed during the preparatory period in correct stay trials, but resembled the shift-related activity observed when the target shift was made toward the same direction. Thus these activity changes were considered to be also related to the process of changing the intended movements voluntarily. 5. We found another population of neurons that showed activity modulation when the target shift was induced by the visual instruction in visual trials (visually guided shift-related neurons). These neurons were active when the light-emitting diode (LED) guided the forthcoming reach to the previous nontarget but not to the previous target. Therefore their activity was not a simple visual response to the LED per se. A majority of them also showed shift-related activity in shift trials (19 of 22 in monkey 2). 6. Neurons exhibiting the shift-related activity were distributed differentially among the two areas. In the pre-SMA, 31% of the neurons recorded showed the shift-related activity, whereas in the SMA, only 7% showed such an activity. These results suggest that pre-SMA and SMA play differential roles in updating the motor plans in accordance with current requirements.  相似文献   

12.
When we make a smooth eye movement to track a moving object, the visual system must take the eye's movement into account in order to estimate the object's velocity relative to the head. This can be done by using extra-retinal signals to estimate eye velocity and then subtracting expected from observed retinal motion. Two familiar illusions of perceived velocity--the Filehne illusion and Aubert-Fleischl phenomenon--are thought to be the consequence of the extra-retinal signal underestimating eye velocity. These explanations assume that retinal motion is encoded accurately, which is questionable because perceived retinal speed is strongly affected by several stimulus properties. We develop and test a model of head-centric velocity perception that incorporates errors in estimating eye velocity and in retinal-motion sensing. The model predicts that the magnitude and direction of the Filehne illusion and Aubert-Fleischl phenomenon depend on spatial frequency and this prediction is confirmed experimentally.  相似文献   

13.
Human subjects can perceive global motion or motions in displays containing diverse local motions, implying representation of velocity at multiple scales. The phenomena of flexible global direction judgments, and especially of motion transparency, also raise the issue of whether the representation of velocity at any one scale is single-valued or multi-valued. A new performance-based measure of transparency confirms that the visual system represents directional information for each component of a transparent display. However, results with the locally paired random-dot display introduced by Qian et al, show that representations of multiple velocities do not coexist at the finest spatial scale of motion analysis. Functionally distinct scales of motion processing may be associated with (i) local motion detectors which show a strong winner-take-all interaction; (ii) spatial integration of local signals to disambiguate velocity; (iii) selection of reliable velocity signals as proposed in the model of Nowlan and Sejnowski; (iv) object-based or surface-based representations that are not necessarily organised in a fixed spatial matrix. These possibilities are discussed in relation to the neurobiological organisation of the visual motion pathway.  相似文献   

14.
PURPOSE: Optokinetic nystagmus (OKN) in young infants typically shows a temporal-to-nasal asymmetry under monocular viewing conditions. The neural basis for this asymmetry has been a matter of debate. One idea is that the OKN asymmetry reflects a similar asymmetry in the directional sensitivity of primary visual cortical (V1) neurons. An alternative hypothesis is that the OKN asymmetry is due to an immaturity in the ability of cortical neurons to influence the activity of subcortical structures that directly control OKN. We addressed this issue by studying the directional sensitivity of V1 neurons in young infant monkeys. METHODS: The neuronal activity of V1 units was recorded from anesthetized and paralyzed rhesus monkeys ranging in age from 6 days to 8 weeks using standard extracellular single-unit recording methods. For comparison, V1 units from normal adult monkeys were also studied. Using drifting sinusoidal gratings of the optimal spatial frequency and a moderate contrast, we measured the responsiveness of individual units to 24 directions of stimulus movement. The preferred stimulus direction and the magnitude of the directional response bias were determined by a vector summation method. RESULTS: No clear signs of nasotemporal asymmetries in direction tuning were found in our cell population from infant monkeys. However, the overall directional sensitivity and the peak monocular response amplitudes of these units were significantly lower, and binocular suppression was greater during the first 4 weeks of life than in adults. CONCLUSIONS: The OKN asymmetry in young infants may be more closely associated with the lower overall directional sensitivity and the subnormal responsiveness of V1 neurons rather than with an obvious asymmetry in the directional properties of V1 neurons.  相似文献   

15.
Although recent fMRI and single unit recording studies have shown that attention modulates neural activity in motion sensitive areas of extrastriate cortex, these approaches cannot reveal qualitative or quantitative effects of attention on perception of motion. To investigate this, we asked observers to select one of two orthogonal directions in a brief, transparent dot display (prime) and then measured their sensitivity to global directional motion in a second uni-directional dot display (probe) presented a short time later. When probe direction matched the attended prime direction, sensitivity was degraded. But, when probe direction matched the ignored prime direction, sensitivity was enhanced, even though both components were of equal physical strength. Sensitivity was unchanged for directions opposite to either previously seen direction. Neither sensory adaptation nor opponent direction mechanisms can account for these data. Rather, processes initiated by visual selection must underlie these dramatic changes in motion sensitivity.  相似文献   

16.
Spatial correlations define the statistical structure of any visual image. Two-point correlations inform the visual system about the spatial frequency content of an image. Higher-order correlations can capture salient features such as object contours. We studied "isodipole" texture discrimination in V1 to determine if higher-order spatial correlations can be extracted by early stages of cortical processing. We made epicortical, local field potential, and single-cell recordings of responses elicited by isodipole texture interchange in anesthetized monkeys. Our studies demonstrate that single neurons in V1 can signal the presence of higher-order spatial correlations in visual textures. This places a computational mechanism, which may be essential for form vision at the earliest stage of cortical processing.  相似文献   

17.
Visual inputs to the brain are mapped in a retinocentric reference frame, but the motor system plans movements in a body-centered frame. This basic observation implies that the brain must transform target coordinates from one reference frame to another. Physiological studies revealed that the posterior parietal cortex may contribute a large part of such a transformation, but the question remains as to whether the premotor areas receive visual information, from the parietal cortex, readily coded in body-centered coordinates. To answer this question, we studied dorsal premotor cortex (PMd) neurons in two monkeys while they performed a conditional visuomotor task and maintained fixation at different gaze angles. Visual stimuli were presented on a video monitor, and the monkeys made limb movements on a panel of three touch pads located at the bottom of the monitor. A trial begins when the monkey puts its hand on the central pad. Then, later in the trial, a colored cue instructed a limb movement to the left touch pad if red or to the right one if green. The cues lasted for a variable delay, the instructed delay period, and their offset served as the go signal. The fixation spot was presented at the center of the screen or at one of four peripheral locations. Because the monkey's head was restrained, peripheral fixations caused a deviation of the eyes within the orbit, but for each fixation angle, the instructional cue was presented at nine locations with constant retinocentric coordinates. After the presentation of the instructional cue, 133 PMd cells displayed a phasic discharge (signal-related activity), 157 were tonically active during the instructed delay period (set-related or preparatory activity), and 104 were active after the go signal in relation to movement (movement-related activity). A large proportion of cells showed variations of the discharge rate in relation to limb movement direction, but only modest proportions were sensitive to the cue's location (signal, 43%; set, 34%; movement, 29%). More importantly, the activity of most neurons (signal, 74%; set, 79%; movement, 79%) varied significantly (analysis of variance, P < 0.05) with orbital eye position. A regression analysis showed that the neuronal activity varied linearly with eye position along the horizontal and vertical axes and can be approximated by a two-dimensional regression plane. These data provide evidence that eye position signals modulate the neuronal activity beyond sensory areas, including those involved in visually guided reaching limb movements. Further, they show that neuronal activity related to movement preparation and execution combines at least two directional parameters: arm movement direction and gaze direction in space. It is suggested that a substantial population of PMd cells codes limb movement direction in a head-centered reference frame.  相似文献   

18.
19.
The basis of directional stimulus-response compatibility was studied using a task in which 128 participants moved a cursor into targets with a joystick, resembling the operation of certain industrial and construction equipment. Compatible and incompatible versions of three alternative compatibility principles were compared in all combinations. Visual Field (VF) compatibility was present if cursor and controlling limb movement were in the same direction in the visual field, Control Display (CD) compatibility meant that the control motion was in the same direction as, and parallel to, cursor motion, and Muscle Synergy (MS) compatibility was defined as use of the muscle synergy normally associated with the required direction as seen in the visual field. VF-compatible conditions had significantly shorter reaction, movement and homing times, and fewer reversal errors, for males and females, in two testing sites. These advantages were maintained over practice. VF compatibility was confirmed as a robust spatial compatibility principle that is affected by neither the orientation of the operator's limb or head nor the muscle synergy used in executing the task. It offers not only more rapid performance, but also a markedly reduced rate of potentially dangerous directional errors. The relationship between this finding and theoretical aspects of stimulus-response compatibility is discussed.  相似文献   

20.
We used functional magnetic resonance imaging (fMRI) during storage of the motion aftereffect (MAE) to examine the relationship between motion perception and neural activity in the human cortical motion complex MT+ (including area MT and adjacent motion-selective cortex). MT+ responds not only to physical motion but also to illusory motion, as in the MAE when subjects who have adapted to continuous motion report that a subsequent stationary test stimulus appears to move in the opposite direction. In the phenomenon of storage, the total decay time of the MAE is extended by inserting a dark period between adaptation and test phases. That is, when the static test pattern is presented after a storage period equal in duration to the normal MAE, the illusory motion reappears for almost as long as the original effect despite the delay. We examined fMRI activation in MT+ during and after storage. Seven subjects viewed continuous motion, followed either by an undelayed stationary test (immediate MAE) or by a completely dark storage interval preceding the test (stored MAE). Like the perceptual effect, activity in MT+ dropped during the storage interval then rebounded to reach a level much higher than after the same delay without storage. Although MT+ activity was slightly enhanced during the storage period following adaptation to continuous motion (compared with a control sequence in which the adaptation grating oscillated and no MAE was perceived), this enhancement was much less than that observed during the perceptual phenomenon. These results indicate that following adaptation, activity in MT+ is pronounced only with the presentation of an appropriate visual stimulus, during which the MAE is perceived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号