首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A single integral equation formulation for electromagnetic scattering by three-dimensional (3-D) homogeneous dielectric objects is developed. In this formulation, a single effective electric current on the surface S of a dielectric object is used to generate the scattered fields in the interior region. The equivalent electric and magnetic currents for the exterior region are obtained by enforcing the continuity of the tangential fields across S. A single integral equation for the effective electric current is obtained by enforcing the vanishing of the total field due to the exterior equivalent currents inside S. The single integral equation is solved by the method of moments. Numerical results for a dielectric sphere obtained with this method are in good agreement with the exact results. Furthermore, the convergence speed of the iterative solution of the matrix equation in this formulation is significantly greater than that of the coupled integral equations formulation  相似文献   

2.
A hybrid formulation which combines the method of moments (MM) with the finite element method (FEM) to solve electromagnetic scattering and/or absorption problems involving inhomogeneous media is discussed. The basic technique is to apply the equivalence principle and transform the original problem into interior and exterior problems, which are coupled on the exterior dielectric body surface through the continuities of the tangential electric field and magnetic field. The interior problem involving inhomogeneous medium is solved by the FEM, and the exterior problem is solved by the MM. The coupling of the interior and exterior problems on their common surface results in a matrix equation for the equivalent current sources for the interior and exterior problems. Combining advantages of both methods allows complicated inhomogeneous problems with arbitrary geometry to be treated in a straightforward manner. The validity and accuracy of the formulation are checked by two-dimensional numerical results, which are compared with the exact eigenfunction solution, the unimoment solution, and Richmond's pure moment solution  相似文献   

3.
The problem of determining the electromagnetic field scattered by two-dimensional structures consisting of both dielectric and conducting cylinders of arbitrary cross section is considered. The conductors may be in the form of strips and the dielectrics may be in the form of shells. The conductors may be partially or fully covered by dielectric layers, while the dielectrics may be partially covered by conductors. Only homogeneous dielectrics are studied. Both the transverse electric (TE) and the transverse magnetic (TM) cases are considered. The problem is formulated in terms of a set of coupled integral equations involving equivalent electric and magnetic surface currents radiating in unbounded media. The method of moments is used to solve the integral equations. Simple expansion and testing procedures are used. Numerical results for scattering cross sections are given for various structures  相似文献   

4.
An integral equation solution to the problem of transverse magnetic (TM) or transverse electric (TE) scattering by an isotropic dielectric/ferrite material cylinder in the presence of a perfectly conducting half-plane is presented. The technique is termed a method of moments (MM)/Green's function solution since the method of moments is used to determine the electric and magnetic polarization currents representing the material cylinder, while the presence of the half-plane is accounted for by including the half-plane Green's function in the kernel of the integral equations. Numerical results are presented for the echo width, material cylinder interior fields, and the surface impedance of a material slab on the surface of a half-plane.  相似文献   

5.
A simple moment solution is given for the problem of electromagnetic scattering from multiple conducting and dielectric cylinders of arbitrary cross section. The system of conducting and dielectric cylinders is excited by a plane-wave polarized transverse magnetic to the axis of the cylinders. The equivalence principle is used to obtain three coupled integral equations for the induced electric current on the conducting cylinders and the equivalent electric and magnetic currents on the surface of dielectric cylinders. The combined field integral equation (CFIE) formulation is used. Sample numerical results are presented. The agreement with available published data is excellent.  相似文献   

6.
The scattering properties of TM or TE illuminated lossy dielectric cylinders of arbitrary cross section are analyzed by the surface integral equation techniques. The surface integral equations are formulated via Maxwell's equations, Green's theorem, and the boundary conditions. The unknown surface fields on the boundaries are then calculated by flat-pulse expansion and point matching. Once the surface fields are found, scattered field in the far-zone and radar cross section (RCS) are readily determined. RCS thus obtained for circular homogeneous dielectric cylinders and dielectric coated conducting cylinders are found to have excellent agreements with the exact eigenfunction expansion results. Extension to arbitrary cross-sectioned cylinders are also obtained for homogeneous lossy elliptical cylinders and wedge-semicircle cross-sectioned cylinders, with and without a conducting cylinder in its center. RCS dependences on frequency and conductivity as well as the matrix stability problem of this surface integral equation method are also examined.  相似文献   

7.
In this paper, a solution is developed to calculate the electric field at one point in space due to an electric dipole exciting an arbitrarily shaped dielectric body of revolution (BOR). Specifically, the electric field is determined from the solution of coupled surface integral equations (SIE) for the induced surface electric and magnetic currents on the dielectric body excited by an elementary electric current dipole source. Both the interior and exterior fields to the dielectric BOR may be accurately evaluated via this approach. For a highly lossy dielectric body, the numerical Green's function is also obtainable from an approximate integral equation (AIE) based on a surface boundary condition. If this equation is solved by the method of moments, significant numerical efficiency over SIE is realized. Numerical results obtained by both SIE and AIE approaches agree with the exact solution for the special case of a dielectric sphere. With this numerical Green's function, the complicated radiation and scattering problems in the presence of an arbitrarily shaped dielectric BOR are readily solvable by the method of moments.  相似文献   

8.
The paper presents an efficient procedure to calculate the electromagnetic field scattered by an inhomogeneous object consisting of N+1 linear isotropic homogeneous regions. The procedure is based on surface integral equation (SIE) formulations and the method of moments. The method of moments (MM) is used to reduce the integral equations for each homogeneous dielectric region into individual matrices. These matrices are each solved for the equivalent electric current in terms of the equivalent magnetic current. A simple algebraic procedure is used to combine these solutions and to solve for the magnetic current on the outer dielectric surfaces of the scatterer. With the magnetic current determined, the electric current on the outer surface of the scatterer is calculated. Because the matrix corresponding to each dielectric region is solved separately, the authors call this procedure the region-by-region method. The procedure is simple and efficient. It requires less computer storage and less execution time than the conventional MM approach, in which all the unknown currents are solved for simultaneously. To illustrate the use of the procedure, the bistatic and monostatic radar cross sections (RCS) of several objects are computed. The computed results are verified by comparison with results obtained numerically using the conventional numerical procedure as well as via the series solution for circular cylindrical structures. The possibility of nonunique solutions has also been investigated  相似文献   

9.
An integral equation and method of moments (MM) solution are presented for the two-dimensional (2-D) problem of transverse magnetic (TM) scattering by an impedance-sheet extension of a perfectly conducting parabolic cylinder. An integral equation is formulated for a dielectric cylinder of general cross section in the presence of a perfectly conducting parabolic cylinder. It is then shown that the solution for a general dielectric cylinder considerably simplifies for the special case of TM scattering by a thin multilayered dielectric strip that can be represented as an impedance sheet. The solution is termed an MM/Green's function solution, where the unknowns in the integral equation are the electric surface currents flowing in the impedance sheet; the presence of the parabolic cylinder is accounted for by including its Green's function in the kernel of the integral equation. The MM solution is briefly reviewed, and expressions for the elements in the matrix equation and the scattered fields are given. Sample numerical results are provided  相似文献   

10.
A volume integral equation approach is used to calculate the scattering characteristics of lossy, inhomogeneous, arbitrarily shaped, two-dimensional dielectric and magnetic bodies. The scatterer is divided into triangular patches, which simulate curved and piecewise linear boundaries more closely than circular cylinder cells. Linear pyramid basis functions are employed to expand the unknown total electric field at the triangle nodes. The enforcement of the boundary conditions by point matching at the nodes converts the electric field integral equation to a matrix equation. Example cases are run and compared to previous moment methods and exact solutions, and this method shows good agreement. This method requires only one unknown per node in dielectric and magnetic material, which is a significant reduction in unknowns and matrix storage compared to traditional methods. By duality, this method can be used at either transverse electric or transverse magnetic polarization  相似文献   

11.
The problem considered is the transverse magnetic (TM) scattering by a dielectric cylinder in the presence of a perfectly conducting half-plane. An integral equation, involving the half-plane Green's function in its Kernel, is obtained for the equivalent volume currents representing the dielectric cylinder. This integral equation is solved by the method of moments. Numerical results are compared with measurements for the echo width of a dielectric slab on a half-plane. The dielectric slab surface impedance and the fields inside the dielectric are also shown.  相似文献   

12.
A single surface integral equation for problems involving electromagnetic scattering from homogeneous dielectric bodies illuminated by time-harmonic sources is developed via the equivalence principle. The equation is formulated in terms of an equivalent electric current defined at the body surface. When allowed to radiate in a homogeneous medium having the material parameters of the exterior medium of the original problem, the electric current solution to the integral equation produces the correct scattered electric and magnetic fields external to the body.  相似文献   

13.
Boundary element method for electromagnetic scattering from cylinders   总被引:1,自引:0,他引:1  
The computation of low frequency scattering of electromagnetic fields by solid/hollow dielectric or conducting cylinders using the boundary element method (BEM) is considered. A general computer program has been developed for both transverse electric and magnetic cases. Numerical examples are given for conducting circular cylinders, and solid and hollow dielectric cylinders. The computational accuracy is checked by comparing the results with the analytic solution or computing an error defined from the optical theorem. In addition some problems at an interior resonance of the scatterer are discussed. The method can be directly applied to more complicated geometries.  相似文献   

14.
A systematic procedure for modeling electromagnetic scattering problems involving bodies with electrically thin features is discussed. The scattering bodies are represented using standard surface integral equation formulations and solutions are obtained via the method of moments (MOM). It is demonstrated that accurate evaluation of the moment matrix elements is critical for obtaining accurate solutions for scatterers having thin features. It is also shown (by numerical example) that some of the various surface integral formulations remain valid and can be used to obtain accurate scattering results for arbitrarily thin dielectric and conducting features. The use of the systematic approach for such problems is illustrated by incorporating the procedures into a two-dimensional (MOM) program. Sample results illustrating the technique's utility and validity are provided  相似文献   

15.
Although surface integral equations have been extensively used for solving the scattering problem of arbitrarily shaped dielectric objects, when applied to the resonance problem, there are still some issues not fully addressed by the literature. In this paper, the method of moments with Rao-Wilton-Glisson basis functions is applied to the electric field integral equation (EFIE) for solving the resonance problem of dielectric objects. The resonant frequency is obtained by searching for the minimum of the reciprocal of the condition number of the impedance matrix in the complex frequency plane, and the modal field distribution is obtained through singular value decomposition (SVD). The determinant of the impedance matrix is not used since it is difficult to find its roots. For the exterior EFIE, the original basis functions are used as testing functions; for the interior EFIE, the basis functions rotated by 90/spl deg/ are used as testing functions. To obtain an accurate modal field solution, the impedance matrix needs to be reduced by half before SVD is applied to it. Numerical results are given and compared with those obtained by using the volume integral equation.  相似文献   

16.
A comparison of integral equations, for problems involving scattering by arbitrary-shape conducting bodies, having a unique solution in the resonance region is presented. The augmented electric and magnetic field integral equations and the combined field integral equation, in their exact and approximate versions, are considered. The integral equations and the basis and test functions used in the method of moments to solve them are reviewed. Their implementation in a computer code is analyzed, mainly the relation between the matrix properties and the CPU time and memory. Numerical results (condition number and backscattering cross section) are presented for the cube. It is shown that the combined field integral equation, and the approximate (symmetric) combined field integral equation, are the most efficient equations to use in the neighborhood of resonant frequencies, because the overdetermined augmented integral equations require an extra matrix multiplication  相似文献   

17.
The electromagnetic scattering by weakly nonlinear infinite dielectric cylinders is the topic dealt with in this paper. The cylinders are assumed to be isotropic, inhomogeneous, and lossless and to have arbitrarily shaped cross sections. A time-periodic illumination of the transverse magnetic type is considered. The nonlinearity is assumed to be expressed by the dependence of the dielectric permittivity on the internal electric field, under the hypothesis that the operator responsible for the nonlinearity does not modify the scalar nature of the dielectric permittivity and produces a time-periodic output. The electromagnetic scattering is then described by an integral equation formulation, and the electromagnetic field distributions inside and outside a scatterer are approximated by an iterative numerical procedure starting with the application of the distorted-wave Born approximation. In a simplified version of the approach, the classic first-order Born approximation is used. The convergence of the approach is discussed in several examples. In the computer simulations concerning cylinders with different cross-section shapes, the effects of the nonlinearity on the field-component fundamental frequency were evaluated for different values of the nonlinear parameters in the case of a Kerr-like nonlinearity and of a uniform incident plane wave. The generation of higher-order harmonics was also considered  相似文献   

18.
Three integral equations for TE (transverse electric) scattering by dielectric cylinders having large values of permittivity are examined. A moment-method solution of the volume-surface integral equation is developed employing isoparametric elements and point matching. The solution is shown to be accurate and stable than the traditional solutions using pulse basis, particularly in the case of scatterers having large refractive indices  相似文献   

19.
This paper presents an application of the edge-based vector finite element method to scattering problems of anisotropic and inhomogeneous objects. Based on conventional FEM functional, a hybrid finite element-surface integral formulation is established by introducing permittivity and permeability tensors. The space domain is divided into interior and exterior regions by an imaginary surface conformal to the scatterer. Edge vector finite elements are used to model the anisotropic and inhomogeneous interior, and a surface integral equation is used to model the unbounded exterior. Compared to other hybrid techniques, the approach here retains the symmetry and sparsity of the FEM matrix and introduces only one type of unknown equivalent current in the moment matrix equation. To validate the theory, typical 2-D numerical results are first presented, which show excellent agreement with exact eigenmode expansion solutions or accurate MoM data  相似文献   

20.
A new symmetric formulation of the hybrid finite element method (HFEM) is described which combines elements of the electric field integral equation (EFIE) and the magnetic field integral equation (MFIE) for the exterior region along with the finite element solution for the interior region. The formulation is applied to scattering by inhomogeneous bodies of revolution. To avoid spurious modes in the interior region a combination of vector and nodal based finite elements are used. Integral equations in the exterior region are used to enforce the Sommerfeld radiation condition by matching both the tangential electric and magnetic fields between interior and exterior regions. Results from this symmetric formulation as well as formulations based solely on the EFIE or MFIE are compared to exact series solutions and integral equation solutions for a number of examples. The behaviors of the symmetric, EFIE, and MFIE solutions are examined at potential resonant frequencies of the interior and exterior regions, demonstrating the advantage of this symmetric formulation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号