首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Biomaterials releasing silver (Ag) are of interest because of their ability to inhibit pathogenic bacteria including antibiotic-resistant strains. In order to investigate the potential of nanometre-thick Ag polymer (Ag/amino-hydrocarbon) nanocomposite plasma coatings, we studied a comprehensive range of factors such as the plasma deposition process and Ag cation release as well as the antibacterial and cytocompatible properties. The nanocomposite coatings released most bound Ag within the first day of immersion in water yielding an antibacterial burst. The release kinetics correlated with the inhibitory effects on the pathogens Pseudomonas aeruginosa or Staphylococcus aureus and on animal cells that were in contact with these coatings. We identified a unique range of Ag content that provided an effective antibacterial peak release, followed by cytocompatible conditions soon thereafter. The control of the in situ growth conditions for Ag nanoparticles in the polymer matrix offers the possibility to produce customized coatings that initially release sufficient quantities of Ag ions to produce a strong adjacent antibacterial effect, and at the same time exhibit a rapidly decaying Ag content to provide surface cytocompatibility within hours/days. This approach seems to be favourable with respect to implant surfaces and possible Ag-resistance/tolerance built-up.  相似文献   

2.
Biostable fiber-reinforced composite (FRC) implants prepared from bisphenol-A-dimethacrylate and triethyleneglycoldimethacrylate resin reinforced with E-glass fibers have been successfully used in cranial reconstructions in 15 patients. Recently, porous FRC structures were suggested as potential implant materials. Compared with smooth surface, porous surface allows implant incorporation via bone ingrowth, but is also a subject to bacterial attachment. Non-cytotoxic silver–polysaccharide nanocomposite coatings may provide a way to decrease the risk of bacterial contamination of porous FRC structures. This study is focused on the in vitro characterization of the effect porosity on the antimicrobial efficiency of the coatings against Staphylococcus aureus and Pseudomonas aeruginosa by a series of microbiological tests (initial adhesion, antimicrobial efficacy, and biofilm formation). Characterization included confocal laser scanning microscopy and scanning electron microscopy. The effect of porosity on the initial attachment of S. aureus was pronounced, but in the case of P. aeruginosa the effect was negligible. There were no significant effects of the coatings on the initial bacterial attachment. In the antimicrobial efficacy test, the coatings were potent against both strains regardless of the sample morphology. In the biofilm tests, there were no clear effects either of morphology or of the coating. Further coating development is foreseen to achieve a longer-term antimicrobial effect to inhibiting bacterial implant colonization.  相似文献   

3.
Calcium silicate ceramic coatings have received considerable attention in recent years due to their excellent bioactivity and bonding strength. However, their high dissolution rates limit their practical applications. In this study, zinc incorporated calcium silicate based ceramic Ca2ZnSi2O7 coating was prepared on Ti-6Al-4V substrate via plasma spraying technology aiming to achieve higher chemical stability and additional antibacterial activity. Chemical stability of the coating was assessed by monitoring mass loss and ion release of the coating after immersion in the Tris–HCl buffer solution and examining pH value variation of the solution. Results showed that the chemical stability of zinc incorporated coating was improved significantly. Antimicrobial activity of the Ca2ZnSi2O7 coating was evaluated, and it was found that the coating exhibited 93% antibacterial ratio against Staphylococcus aureus. In addition, in vitro bioactivity and cytocompatibility were confirmed for the Ca2ZnSi2O7 coating by simulated body fluid test, MC3T3-E1 cells adhesion investigation and cytotoxicity assay.  相似文献   

4.
Antibacterial coatings on catheters for acute dialysis were obtained by an innovative and patented silver deposition technique based on the photo-reduction of the silver solution on the surface of catheter, with consequent formation of antibacterial silver nanoparticles. Aim of this work is the structural and morphological characterization of these medical devices in order to analyze the distribution and the size of clusters on the polymeric surface, and to verify the antibacterial capability of the devices treated by this technique against bacterial proliferation. The structure and morphology of the silver nanoparticles were investigated by using scanning and transmission electron microscopy. The antimicrobial capability of the catheters after silver deposition was confirmed by antibacterial tests with Escherichia coli. Both scanning electron microscopy analysis and antibacterial tests were performed also after washing catheters for 30 days in deionized water at 37°C, relating these data to thermogravimetric analysis and to energy dispersive spectroscopy, in order to check the resistance of coating and its antimicrobial capability after the maximum time of life of these devices.  相似文献   

5.
This study was performed to determine the antimicrobial and antibiofilm activities of silver nanoparticles (AgNPs) biosynthesised using Streptomyces griseorubens AU2 isolated from soil. The antimicrobial activity of the AgNPs was determined by agar well diffusion, disc diffusion and broth microdilution methods. Diameters of the zone of inhibition results clearly displayed that the microbially biosynthesised AgNPs have potent antimicrobial activity against Candida albicans, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) of the nanoparticles that had been determined by broth microdilution method were found to be 20 and 50 µg/ml for C. albicans, B. subtilis and S. aureus; 10 and 20 µg/ml for E. coli and P. aeruginosa, respectively. For determining the effect of AgNPs on biofilm formation under in vitro conditions, MIC and subMICs were studied on P. aeruginosa and S. aureus biofilms by using microplate biofilm assay. Treatment of the AgNPs resulted in a decrease in the biofilm formation of S. aureus and P. aeruginosa as 26.52 and 25.50%, respectively. As a result of this study, it can be suggested that actinobacterially synthesised AgNPs have an effective potential to be used for pharmaceutical applications against multi‐resistant microorganisms.Inspec keywords: silver, nanoparticles, nanomedicine, antibacterial activity, biomedical materials, microorganismsOther keywords: antimicrobial potentials, antibiofilm potentials, silver nanoparticles, antimicrobial activity, antibiofilm activity, Streptomyces griseorubens AU2, disc diffusion, microdilution method, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, nanoparticle minimum inhibitory concentration, nanoparticle minimum lethal concentration, biofilm formation, in vitro conditions, microplate biofilm assay, pharmaceutical applications, multiresistant microorganisms, Ag  相似文献   

6.
In the current study, for the first time, photochemical facile green synthesis of salep capped silver nano-wedges was reported via the wet chemical synthesis procedure. Sunlight-UV as an available reducing agent caused mild reduction of silver ions to the silver nano-wedges. Salep as an effective capping/shaping polysaccharide bioresource material was used in the reaction medium and caused creation of flower-like self-assembled structures of the silver nano-wedges. The formation of silver nano-wedges and their flower-like self-assembled structures was confirmed by SEM technique. Further investigations were carried out using UV–vis, FTIR, GPC and XRD data. The prepared silver nano-wedges showed potent biocidal activity against three classes of microorganisms (Escherichia coli Gram-negative bacteria, Staphylococcus aureus Gram-positive bacteria and Candida albicans fungus). The silver nano-wedges prepared with this method can be introduced as real poniards because of their unique shape and antibacterial/antifungal activity and would be promising nominees for a wide range of biomedical applications.  相似文献   

7.
Microbial colonization of implanted medical devices in humans can lead to device failure and life‐threatening infections. One strategy to prevent this unwanted colonization is to coat devices with polymers that reduce bacterial attachment. This study investigates how mucins, a class of biopolymers found in mucus, can be used as surface coatings to prevent attachment of selected respiratory pathogens to polystyrene surfaces. Our data show that coatings of porcine gastric mucins or bovine submaxillary mucins reduce surface attachment by Streptococcus pneumoniae and Staphylococcus aureus, but not Pseudomonas aeruginosa. To elucidate how mucin coatings repel S. pneumoniae and S. aureus, the molecular components of mucins are examined. Our data suggest that mucin‐bound glycans are key structural contributors of mucin coatings and are necessary for the repulsive effects toward S. pneumoniae and S. aureus.  相似文献   

8.
A silver-containing titanium oxide nanocomposite layer was synthesized on a commercially-pure titanium (cp-Ti) substrate by a reactive pulsed DC magnetron sputtering. The oxygen partial pressure was controlled to improve the mechanical and antibacterial properties and to sustain the biocompatibility for the implantable devices. The films were analyzed by a series of techniques including FESEM, HR-XRD, and XPS. The film's mechanical properties were determined by a nano-indenter and scratch tester. Antibacterial activity was assessed by the silver ion release test and the plate-counting method used against Staphylococcus aureus. An agar diffusion test was performed to evaluate the cytotoxicity in terms of the biocompatibility. Silver nanoparticles mainly existed at the surface region and these contributed to improved mechanical properties, such as increased hardness and a lower friction coefficient. Moreover, the relationship between silver ion release and the antibacterial activity of the films was explored. The results confirmed that the magnetron sputtered silver-containing titanium oxide nanocomposite coatings have good mechanical properties and are applicable as an efficient antibacterial layer with sustained biocompatibility.  相似文献   

9.
Nanomaterials with high stability and efficient antibacterial activity are of considerable interest. The preparation of silver nanoparticles (AgNPs) on titania coatings and their effective antibacterial activity against Staphylococcus aureus ATCC 6538 were reported. Titanium dioxide (TiO2) coatings with AgNPs were prepared on Si wafers using the reactive magnetron sputtering method. The surface topography of AgNPs/TiO2 coatings imaged using scanning electron microscopy revealed that the size and surface density of AgNPs grown by the photoreduction of silver ions were dependent on the concentration of AgNO3 in the primary solution and the time of TiO2 exposure to UV illumination. Evaluation of the antimicrobial properties and surface analysis before and after the biological test of AgNPs/TiO2 coatings indicates their high antimicrobial stability and durability. Furthermore, the interdependence between the concentration of released silver and bacterial growth inhibition was demonstrated. In addition, direct contact killing and released silver-mediated killing have been proposed as a bactericidal mechanism of action of tested coatings with AgNPs.  相似文献   

10.
This work is aimed at developing a green antimicrobial coating. First, a green antimicrobial agent, quaternised chitosan (QCS)/organic montmorillonite (OMMT)/silver nanoparticles (Ag NPs) (QOMA) nanocomposite was fabricated through an environmental-friendly one-step approach. Morphological and structural characteristics of QOMA were investigated, and good antimicrobial activity was proved. QOMA was then incorporated into powder coating formulations to form a homogeneous coating on steel plates, which was studied by scanning electron images. Besides, the physical and mechanical properties as well as the antimicrobial performances of the coatings were discussed. The results showed that the addition of QOMA imparted good antimicrobial capacity to the powder coating, but did not affect its physical and mechanical properties. The coatings were able to effectively inactivate Gram-negative bacteria (Escherichia coli), Gram-positive bacteria (Staphylococcus aureus) and fungi (Aspergillus niger, Penicillium funiculosum, Chaetomium globasum, Paecilomyces varioti, Asp. terreus and Aureobasidium pullulans). Our findings demonstrate the possibilities of green antimicrobial coating containing QOMA for practical applications in medical devices, domestic appliances and other solid surfaces concerning bacterial infection and contamination.  相似文献   

11.
The chitosan–silver oxide encapsulated nanocomposite film was prepared by solution casting method. The prepared film was characterized by FTIR, scanning electron microscopy (SEM), thermal studies, and UV-Vis spectroscopy. The elemental composition of the film was studied by energy dispersive X-ray analysis (EDAX). The antibacterial activity of the composite film against pathogenic bacteria viz. Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa was measured by agar diffusion method. Our observations suggest that chitosan as biomaterial based nanocomposite film containing silver oxide has an excellent antibacterial ability for food packaging applications.  相似文献   

12.
《Vacuum》2012,86(3):235-241
Surface treatments on biomaterials using several methods have greatly reduced the in vivo bacterial attachment, surface colonization and formation of biofilm. In this study, the effect of silver (Ag) ion release against in vitro antibacterial activity and cytotoxicity of 1–4wt% Ag doped titania (TiO2) thin film coatings were evaluated. These coatings were deposited for 1–6 h onto stainless steel substrate (SS) using (radio frequency) RF magnetron sputtering technique. The coatings predominantly in the crystalline anatase phase were configured using X-ray Diffraction (XRD). Scanning electron microscopy (SEM) observation showed the presence of Ag–TiO2 nanoparticles of less than 100 nm in all the coated surfaces confirming the formation of nanostructured coatings. An initial rapid release, followed by a sustained lower release of Ag ion concentration was measured between 0.45 and 122 ppb when all the coated substrates immersed in Phosphate Buffered Saline (PBS) for 1–10 days. The obtained concentration was less than the maximum toxic concentration for human cells; yet achieved antibacterial concentration, sufficient to kill or inhibit the growth of bacteria. In vitro cytotoxicity results have indicated that 1–4 wt% of Ag doped TiO2 coatings had no adverse effect on mouse fibroblast proliferation, confirming its cytocompatibility. The antibacterial assessment was performed on 1 and 2 wt% Ag–TiO2 coatings using Staphylococcus aureus (S. aureus) whereby significant antibacterial activity was observed in 2 wt% Ag–TiO2 coatings.  相似文献   

13.
Epidemics spread many types of pathogenic bacterial strains, especially strains of MRSA (Methicillin-resistant Staphylococcus aureus), which are being increasingly reported in many geographical areas [1]. This is becoming to be a serious global problem, particularly in hospitals. Not only are antibiotics proving to be increasingly ineffective but also the bacteria responsible for more than 70% of hospital-acquired bacterial infections are resistant to at least one of the drugs commonly used to treat them. In this study, hybrid coating A1 and nanocomposite hybrid coating A2 based on TMSPM (3-(trimethoxysilyl)propyl methacrylate, MMA (methyl methacrylate), TEOS (tetraethyl orthosilicate) and IPTI (titanium isopropoxide) containing silver and copper ions with or without nanoparticles of titanium dioxide were prepared by the sol–gel method. They were deposited on glass, poly(methyl methacrylate) and cotton using dip-coating or spin-coating, and then cured at 150 °C for 3 h or, in the case of poly(methyl methacrylate), at 100 °C for 4.5 h. The morphology and microstructure of these hybrid coatings were examined by SEM. The abrasion resistance was tested using a washability tester and found to depend heavily on the curing temperature. Seven types of bacterial strains were used to determine the profile of antibacterial activity, namely Escherichia coli, Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus — MRSA (CCM 4223), MRSA-2 (CCM 7112), Acinetobacter baumanii, Pseudomonas aeruginosa, and Proteus vulgaris (according to ALE-G18, CSNI). All the samples were tested by irradiating with either a UV-A or a daylight fluorescent lamp. All types of hybrid coating A1 and nanocomposite hybrid coating A2 were found to possess an excellent antibacterial effect, including against the pathogenic bacterial strains of MRSA, which present a dangerous threat on a global scale.  相似文献   

14.
Surface treatments on biomaterials using several methods have greatly reduced the in vivo bacterial attachment, surface colonization and formation of biofilm. In this study, the effect of silver (Ag) ion release against in vitro antibacterial activity and cytotoxicity of 1-4wt% Ag doped titania (TiO2) thin film coatings were evaluated. These coatings were deposited for 1-6 h onto stainless steel substrate (SS) using (radio frequency) RF magnetron sputtering technique. The coatings predominantly in the crystalline anatase phase were configured using X-ray Diffraction (XRD). Scanning electron microscopy (SEM) observation showed the presence of Ag-TiO2 nanoparticles of less than 100 nm in all the coated surfaces confirming the formation of nanostructured coatings. An initial rapid release, followed by a sustained lower release of Ag ion concentration was measured between 0.45 and 122 ppb when all the coated substrates immersed in Phosphate Buffered Saline (PBS) for 1-10 days. The obtained concentration was less than the maximum toxic concentration for human cells; yet achieved antibacterial concentration, sufficient to kill or inhibit the growth of bacteria. In vitro cytotoxicity results have indicated that 1-4 wt% of Ag doped TiO2 coatings had no adverse effect on mouse fibroblast proliferation, confirming its cytocompatibility. The antibacterial assessment was performed on 1 and 2 wt% Ag-TiO2 coatings using Staphylococcus aureus (S. aureus) whereby significant antibacterial activity was observed in 2 wt% Ag-TiO2 coatings.  相似文献   

15.
Silver-containing hydroxyapatite (HA) coatings have been prepared on titanium substrate by vacuum plasma spraying (VPS) method and anti-bacterial properties of the coatings were examined. Three types of bacteria stains, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, were employed in this test. The results showed that the silver-containing HA coatings exhibited significant anti-bacterial effects against the three bacteria with anti-bacterial ratios higher than 95%. The release of silver ions in the physiological environment ensured excellent anti-bacterial properties of the silver-containing HA coatings. International standard ISO 10993-12 was adopted for cytotoxicity evaluation using fibroblast cell line L929, and it was found that the cytotoxicity for the coatings ranked 0 that showed no cytotoxicity for the coatings. Hemolysis test was processed according to ASTM F 756 standard with anti-coagulated rabbit blood, and the hemolysis ratios of the coatings were below 0.4%, indicating of non-hemolysis for the coatings.  相似文献   

16.
It has been established that microbial biofilms are largely responsible for the recalcitrance of many wound infections to conventional antibiotics. It was proposed that the efficacy of antibiotics could be optimized via the inhibition of bacterial biofilm growth in wounds. The combination of antibiofilm agent and antibiotics into a wound dressing may be a plausible strategy in wound infection management. Xylitol is an antibiofilm agent that has been shown to inhibit the biofilm formation. The purpose of this study was to develop an alginate film containing xylitol and gentamicin for the treatment of wound infection. Three films, i.e. blank alginate film (SA), alginate film with xylitol (F5) and alginate film with xylitol and gentamicin (AG), were prepared. The films were studied for their physical properties, swelling ratio, moisture absorption, moisture vapor transmission rate (MVTR), mechanical and rheology properties, drug content uniformity as well as in vitro drug release properties. Antimicrobial and antibiofilm in vitro studies on Staphylococcus aureus and Pseudomonas aeruginosa were also performed. The results showed that AG demonstrates superior mechanical properties, rheological properties and a higher MVTR compared with SA and F5. The drug flux of AG was higher than that of commercial gentamicin cream. Furthermore, antimicrobial studies showed that AG is effective against both S. aureus and P. aeruginosa, and the antibiofilm assays demonstrated that the combination was effective against biofilm bacteria. In summary, alginate films containing xylitol and gentamicin may potentially be used as new dressings for the treatment of wound infection.  相似文献   

17.
Monodisperse silver (Ag) nanoparticles were synthesized by using Parthenium hystrophorus L leaf extract in aqueous media. The synthesized nanoparticles were characterized by using UV-vis spectrophotometer, X-ray diffracto-meter (XRD), transmission electron microscope (TEM), and dynamics light scattering (DLS). Size-dependent antibacterial activities of Ag nanoparticles were tested against Gram negative Pseudomonas aeruginosa and Gram positive Staphylococcus aureus. Ag nanoparticles having 20?±?2?nm size in diameter show maximum zone of inhibition (23?±?2.2?mm) in comparison to 40?nm and 70?nm diameter nanoparticles for Pseudomonas aeruginosa. The zone of inhibition against Staphylococcus aureus were 19?±?1.8?mm, 15?±?1.5?mm and 11?±?1?mm for 20?nm, 40?nm, and 70?nm, respectively. In addition, affect of concentration of 20?nm size Ag nanoparticles on Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus species were also reported and results were compared with 10?µg/ml dose of Gentamicin sulphate. The Parthenium hystrophorus L leaf extract capped 20?±?2?nm Ag nanoparticles (7.5?µg/ml) shows statistically significant antibacterial activity than Gentamicin sulphate (10?µg/ml) against Staphylococcus aureus.  相似文献   

18.
A silver containing coating used in the human body, e.g., on an implant should be both effectively antimicrobial and non-cytotoxic to human cells. It is generally believed that the biologic effect originates from silver ions released from the coating. Nanocomposites with well controlled Ag filling factor were prepared by co-sputtering, and the silver surface concentration and the silver release were determined by XPS and ICP-MS, respectively. Here we show that only a small therapeutic window exists for dissolved silver but the therapeutic window is largely increased at the surface. While the toxicity observed for mammalian cells in contact with the bioactive Ag/TiO2 nanocomposite surface and for silver ions in solution is rather similar the antimicrobial activity is drastically enhanced at the surface. A model is proposed to explain the strong increase of the antimicrobial activity at the surface. The present results not only question well-established tests for antimicrobial activity but they are also important for the design of antimicrobial coatings, e.g., for biomedical devices.  相似文献   

19.
Hydroxyapatite (HA) coatings on titanium (Ti) substrates have attracted much attention owing to the combination of good mechanical properties of Ti and superior biocompatibility of HA. Incorporating silver (Ag) into HA coatings is an effective method to impart the coatings with antibacterial properties. However, the uniform distribution of Ag is still a challenge and Ag particles in the coatings are easy to agglomerate, which in turn affects the applications of the coatings. In this study, we employed pulsed electrochemical deposition to co-deposit HA and Ag simultaneously, which realized the uniform distribution of Ag particles in the coatings. This method was based on the use of a well-designed electrolyte containing Ag ions, calcium ions and l-cysteine, in which cysteine acted as the coordination agent to stabilize Ag ions. The antibacterial and cell culture tests were used to evaluate the antibacterial properties and biocompatibility of HA/Ag composite coatings, respectively. The results indicated the as-prepared coatings had good antibacterial properties and biocompatibility. However, an appropriate silver content should be chosen to balance the biocompatibility and antibacterial properties. Heat treatments promoted the adhesive strength and enhanced the biocompatibility without sacrificing the antibacterial properties of the HA/Ag coatings. In summary, this study provided an alternative method to prepare bioactive surfaces with bactericidal ability for biomedical devices.  相似文献   

20.
The emergence of multidrug resistant bacteria has resulted in plenty of stubborn nosocomial infections and severely threatens human health. Developing novel bactericide and therapeutic strategy is urgently needed. Herein, mesoporous silica supported silver–bismuth nanoparticles (Ag‐Bi@SiO2 NPs) are constructed for synergistic antibacterial therapy. In vitro experiments indicate that the hyperthermia originating from Bi NPs can disrupt cell integrity and accelerate the Ag ions release, further exhibiting an excellent antibacterial performance toward methicillin‐resistant Staphylococcus aureus (MRSA). Besides, under laser irradiation, Ag‐Bi@SiO2 NPs at 100 µg mL?1 can effectively obliterate mature MRSA biofilm and cause a 69.5% decrease in the biomass, showing a better therapeutic effect than Bi@SiO2 NPs with laser (26.8%) or Ag‐Bi@SiO2 NPs without laser treatment (30.8%) groups. More importantly, in vivo results confirm that ≈95.4% of bacteria in abscess are killed and the abscess ablation is accelerated using the Ag‐Bi@SiO2 NPs antibacterial platform. Therefore, Ag‐Bi@SiO2 NPs with photothermal‐enhanced antibacterial activity are a potential nano‐antibacterial agent for the treatment of skin infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号