首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In order to improve traffic safety on expressways, it is important to develop proactive safety management strategies with consideration for segment types and traffic flow states because crash mechanisms have some differences by each condition. The primary objective of this study is to develop real-time crash risk prediction models for different segment types and traffic flow states on expressways. The mainline of expressways is divided into basic segment and ramp vicinity, and the traffic flow states are classified into uncongested and congested conditions. Also, Korean expressways have irregular intervals between loop detector stations. Therefore, we investigated on the effect and application of the detector stations at irregular intervals for the crash risk prediction on expressways. The most significant traffic variables were selected by conditional logistic regression analysis which could control confounding factors. Based on the selected traffic variables, separate models to predict crash risk were developed using genetic programming technique. The model estimation results showed that the traffic flow characteristics leading to crashes are differed by segment type and traffic flow state. Especially, the variables related to the intervals between detector stations had a significant influence on crash risk prediction under the uncongested condition. Finally, compared with the single model for all crashes and the logistic models used in previous studies, the proposed models showed higher prediction performance. The results of this study can be applied to develop more effective proactive safety management strategies for different segment types and traffic flow states on expressways with loop detector stations at irregular intervals.  相似文献   

2.
Urban expressways are the key components of the urban traffic network. The traffic safety situation on expressways directly influences the efficiency of the whole network. A total of 48,325 crashes were recorded by Shanghai Expressway Surveillance System in a three-year period. Considering the different crash mechanisms under different congestion levels, models for the total crashes, non-congested-flow crashes and congested-flow crashes were respectively formulated based on the real-time traffic condition corresponding to each crash. Moreover, considering the potential spatial correlation among segments, the adjacent-correlated spatial and distance-correlated spatial models were formulated and compared to the traditional non-spatial-correlated model. A Bayesian approach was employed to estimate the parameters. The results showed that the congestion index, merging ratio, ramp density, and average daily traffic significantly affect the crash frequency. The safety factors in non-congested flow and congested flow are different; diverging behavior is more risky in non-congested flow, more lanes tend to increase the risk of crashes in congested flow, and horizontal curves tend to decrease the crash risk in congested flow but cause high risk in non-congested flow. In addition, the distance-correlated spatial model is found to be the best-fitting model. The results of this study suggested that dedicated safety countermeasures can be designed for different traffic situations on urban expressways.  相似文献   

3.
4.
Urban expressway systems have been developed rapidly in recent years in China; it has become one key part of the city roadway networks as carrying large traffic volume and providing high traveling speed. Along with the increase of traffic volume, traffic safety has become a major issue for Chinese urban expressways due to the frequent crash occurrence and the non-recurrent congestions caused by them. For the purpose of unveiling crash occurrence mechanisms and further developing Active Traffic Management (ATM) control strategies to improve traffic safety, this study developed disaggregate crash risk analysis models with loop detector traffic data and historical crash data. Bayesian random effects logistic regression models were utilized as it can account for the unobserved heterogeneity among crashes. However, previous crash risk analysis studies formulated random effects distributions in a parametric approach, which assigned them to follow normal distributions. Due to the limited information known about random effects distributions, subjective parametric setting may be incorrect. In order to construct more flexible and robust random effects to capture the unobserved heterogeneity, Bayesian semi-parametric inference technique was introduced to crash risk analysis in this study. Models with both inference techniques were developed for total crashes; semi-parametric models were proved to provide substantial better model goodness-of-fit, while the two models shared consistent coefficient estimations. Later on, Bayesian semi-parametric random effects logistic regression models were developed for weekday peak hour crashes, weekday non-peak hour crashes, and weekend non-peak hour crashes to investigate different crash occurrence scenarios. Significant factors that affect crash risk have been revealed and crash mechanisms have been concluded.  相似文献   

5.
Real-time crash risk prediction using traffic data collected from loop detector stations is useful in dynamic safety management systems aimed at improving traffic safety through application of proactive safety countermeasures. The major drawback of most of the existing studies is that they focus on the crash risk without consideration of crash severity. This paper presents an effort to develop a model that predicts the crash likelihood at different levels of severity with a particular focus on severe crashes. The crash data and traffic data used in this study were collected on the I-880 freeway in California, United States. This study considers three levels of crash severity: fatal/incapacitating injury crashes (KA), non-incapacitating/possible injury crashes (BC), and property-damage-only crashes (PDO). The sequential logit model was used to link the likelihood of crash occurrences at different severity levels to various traffic flow characteristics derived from detector data. The elasticity analysis was conducted to evaluate the effect of the traffic flow variables on the likelihood of crash and its severity.The results show that the traffic flow characteristics contributing to crash likelihood were quite different at different levels of severity. The PDO crashes were more likely to occur under congested traffic flow conditions with highly variable speed and frequent lane changes, while the KA and BC crashes were more likely to occur under less congested traffic flow conditions. High speed, coupled with a large speed difference between adjacent lanes under uncongested traffic conditions, was found to increase the likelihood of severe crashes (KA). This study applied the 20-fold cross-validation method to estimate the prediction performance of the developed models. The validation results show that the model's crash prediction performance at each severity level was satisfactory. The findings of this study can be used to predict the probabilities of crash at different severity levels, which is valuable knowledge in the pursuit of reducing the risk of severe crashes through the use of dynamic safety management systems on freeways.  相似文献   

6.
Understanding pedestrian crash causes and contributing factors in developing countries is critically important as they account for about 55% of all traffic crashes. Not surprisingly, considerable attention in the literature has been paid to road traffic crash prediction models and methodologies in developing countries of late. Despite this interest, there are significant challenges confronting safety managers in developing countries. For example, in spite of the prominence of pedestrian crashes occurring on two-way two-lane rural roads, it has proven difficult to develop pedestrian crash prediction models due to a lack of both traffic and pedestrian exposure data. This general lack of available data has further hampered identification of pedestrian crash causes and subsequent estimation of pedestrian safety performance functions. The challenges are similar across developing nations, where little is known about the relationship between pedestrian crashes, traffic flow, and road environment variables on rural two-way roads, and where unique predictor variables may be needed to capture the unique crash risk circumstances. This paper describes pedestrian crash safety performance functions for two-way two-lane rural roads in Ethiopia as a function of traffic flow, pedestrian flows, and road geometry characteristics. In particular, random parameter negative binomial model was used to investigate pedestrian crashes. The models and their interpretations make important contributions to road crash analysis and prevention in developing countries. They also assist in the identification of the contributing factors to pedestrian crashes, with the intent to identify potential design and operational improvements.  相似文献   

7.
Intersections are hazardous locations and many studies have been conducted to identify the factors contributing to the frequency and severity of intersection crashes. However, little attention has been devoted to investigating the differences between crashes at urban and rural intersections, which have different road, traffic and environmental characteristics. By applying a random parameters probit model to the data from the Canadian Province of Alberta between 2008 and 2012, we find that urban intersection crashes are more likely to be associated with hit and run behaviours, roads with higher traffic volume, wet surfaces, four lanes and skewed intersections, and crashes on weekdays and off-peak hours, whereas rural crashes are likely to be associated with increases in fatalities and injuries, roads with higher speed limits, special road features, exit and entrance terminals, gravel, curvature and two lanes, crashes during weekends, peak hours and night-time, run-off-road crashes, and police visit to crash scene. Hence, road safety professionals in urban and rural areas should consider these differences when designing and implementing counter-measures to improve intersection safety, especially their safety audits and reviews, enforcement activities and education campaigns, to target the more vulnerable times and locations in the different areas.  相似文献   

8.
Farm vehicle crashes are a major safety concern for farmers as well as all other users of the public road system in agricultural states. Using data on farm vehicle crashes that occurred on Iowa's public roads between 2004 and 2006, we estimate a multinomial logit model to identify crash-, farm vehicle-, and driver-specific factors that determine farm vehicle crash injury severity outcomes. Estimation findings indicate that there are crash patterns (rear-end manner of collision; single-vehicle crash; farm vehicle crossed the centerline or median) and conditions (obstructed vision and crash in rural area; dry road, dark lighting, speed limit 55 mph or higher, and harvesting season), as well as farm vehicle and driver-contributing characteristics (old farm vehicle, young farm vehicle driver), where targeted intervention can help reduce the severity of crash outcomes. Determining these contributing factors and their effect is the first step to identifying countermeasures and safety strategies in a bid to improve transportation safety for all users on the public road system in Iowa as well as other agricultural states.  相似文献   

9.
In order to better understand the underlying crash mechanisms, left-turn crashes occurring at 197 four-legged signalized intersections over 6 years were classified into nine patterns based on vehicle maneuvers and then were assigned to intersection approaches. Crash frequency of each pattern was modeled at the approach level by mainly using Generalized Estimating Equations (GEE) with the Negative Binomial as the link function to account for the correlation among the crash data. GEE with a binomial logit link function was also applied for patterns with fewer crashes. The Cumulative Residuals test shows that, for correlated left-turn crashes, GEE models usually outperformed basic Negative Binomial models. The estimation results show that there are obvious differences in the factors that cause the occurrence of different left-turn collision patterns. For example, for each pattern, the traffic flows to which the colliding vehicles belong are identified to be significant. The width of the crossing distance (represented by the number of through lanes on the opposing approach of the left-turning traffic) is associated with more left-turn traffic colliding with opposing through traffic (Pattern 5), but with less left-turning traffic colliding with near-side crossing through traffic (Pattern 8). The safety effectiveness of the left-turning signal is not consistent for different crash patterns; "protected" phasing is correlated with fewer Pattern 5 crashes, but with more Pattern 8 crashes. The study indicates that in order to develop efficient countermeasures for left-turn crashes and improve safety at signalized intersections, left-turn crashes should be considered in different patterns.  相似文献   

10.
Urban road safety management is usually characterized by the lack of sufficient, good quality crash data and low budgets to obtain it even though many traffic accidents occur there. For example, 54 percent of road crashes in Spain take place in urban areas, and 10 percent of urban fatal crashes occur on crosstown roads, which are rural roads that traverse small communities. Traffic calming measures (TCMs) are often implemented on these parts of rural roads that traverse small communities in order to reduce both the frequency and severity of crashes by lowering speeds, but evaluation of their effectiveness has been limited. The objective of this study was to develop a methodology using continuous speed profiles to evaluate the safety effectiveness of TCMs on crosstown roads as part of an integrated system in the absence of historical data. Given the strong relationship between speed and crash experience, safety performance can be related to speed. Consequently, speed can be used indirectly as a surrogate safety measure in the absence of crash and speed data.  相似文献   

11.
The primary objective of this study is to evaluate the impacts of the number and arrangement of lanes on freeway exit ramps on the safety performance of freeway diverge areas. The research team collected crash data at 343 freeway segments in the state of Florida. Four different types of exit ramps were considered in this study. They were defined as type 1, type 2, type 3, and type 4 exit ramps respectively. Cross-sectional comparison was conducted for comparing crash frequency, crash rate and crash severity between different types of freeway exit ramps. Crash prediction models were developed to identify the factors that contribute to the crashes reported at selected freeway segments and to provide quantified information regarding the safety impacts of different freeway exit ramps. It was found that the ramp and freeway AADT, posted speed limit on freeway, deceleration lane length, right shoulder width, and the type of exit ramp significantly affected the safety performance of freeway diverge areas. The study demonstrated the safety benefits of using lane-balanced exit ramps. Based on the crash prediction models, replacing a type 1 exit ramp (lane-balanced) with a type 2 exit ramp (not lane-balanced) will increase crash counts at freeway diverge areas by 68.33%. Replacing a type 3 ramp (lane-balanced) with a type 4 ramp (not lane-balanced) will increase crash counts at freeway diverge areas by 32.20%.  相似文献   

12.
In traffic safety studies, crash frequency modeling of total crashes is the cornerstone before proceeding to more detailed safety evaluation. The relationship between crash occurrence and factors such as traffic flow and roadway geometric characteristics has been extensively explored for a better understanding of crash mechanisms. In this study, a multi-level Bayesian framework has been developed in an effort to identify the crash contributing factors on an urban expressway in the Central Florida area. Two types of traffic data from the Automatic Vehicle Identification system, which are the processed data capped at speed limit and the unprocessed data retaining the original speed were incorporated in the analysis along with road geometric information. The model framework was proposed to account for the hierarchical data structure and the heterogeneity among the traffic and roadway geometric data. Multi-level and random parameters models were constructed and compared with the Negative Binomial model under the Bayesian inference framework. Results showed that the unprocessed traffic data was superior. Both multi-level models and random parameters models outperformed the Negative Binomial model and the models with random parameters achieved the best model fitting. The contributing factors identified imply that on the urban expressway lower speed and higher speed variation could significantly increase the crash likelihood. Other geometric factors were significant including auxiliary lanes and horizontal curvature.  相似文献   

13.
The safety performance of left-side off-ramps was evaluated by comparing that of right-side off-ramps at freeway diverge areas. Crash records at a total of 11 left-side and 63 similar right-side diverge areas in Florida were collected. Based on the data collected, the traffic conflict study and the cross-sectional comparison of crashes were conducted in this study. Four types of traffic conflicts were identified and counted. The average conflict rates near the ramp area were found to be approximately 10 per 1000 conflicting vehicles. Crash data were compared for the left-side off-ramps with right-side off-ramps by two exit ramp types: one-lane exit and two-lane exit with an optional lane, respectively. The comparisons indicate that the left-side off-ramp did have higher average crash counts, crash rate and percentage of severe crashes, but the difference is only statistically significant for the severe crashes at a 10% level. A crash prediction model for one-lane exit was developed to identify the factors that contribute to the crashes that have been reported for selected freeway segments. The conclusion is consistent with cross-sectional comparison. It is expected that this study could help engineers have a better understanding of left-side off-ramps at freeway diverge area and select the appropriate countermeasures and practical designs.  相似文献   

14.
Most traffic crashes in Chinese cities occur at signalized intersections. Research on the intersection safety problem in China is still in its early stage. The recent development of an advanced traffic information system in Shanghai enables in-depth intersection safety analyses using road design, traffic operation, and crash data. In Shanghai, the road network density is relatively high and the distance between signalized intersections is small, averaging about 200 m. Adjacent signalized intersections located along the same corridor share similar traffic flows, and signals are usually coordinated. Therefore, when studying intersection safety in Shanghai, it is essential to account for intersection correlations within corridors. In this study, data for 195 signalized intersections along 22 corridors in the urban areas of Shanghai were collected. Mean speeds and speed variances of corridors were acquired from taxis equipped with Global Positioning Systems (GPS). Bayesian hierarchical models were applied to identify crash risk factors at both the intersection and the corridor levels. Results showed that intersections along corridors with lower mean speeds were associated with fewer crashes than those with higher speeds, and those intersections along two-way roads, under elevated roads, and in close proximity to each other, tended to have higher crash frequencies.  相似文献   

15.
This research presents a comprehensive analysis of motor vehicle–bicycle crashes using 4 years of reported crash data (2004–2007) in Beijing. The interrelationship of irregular maneuvers, crash patterns and bicyclist injury severity are investigated by controlling for a variety of risk factors related to bicyclist demographics, roadway geometric design, road environment, etc.Results show that different irregular maneuvers are correlated with a number of risk factors at different roadway locations such as the bicyclist age and gender, weather and traffic condition. Furthermore, angle collisions are the leading pattern of motor vehicle–bicycle crashes, and different irregular maneuvers may lead to some specific crash patterns such as head-on or rear-end crashes. Orthokinetic scrape is more likely to result in running over bicyclists, which may lead to more severe injury. Moreover, bicyclist injury severity level could be elevated by specific crash patterns and risk factors including head-on and angle collisions, occurrence of running over bicyclists, night without streetlight, roads without median/division, higher speed limit, heavy vehicle involvement and older bicyclists.This study suggests installation of median, division between roadway and bikeway, and improvement of illumination on road segments. Reduced speed limit is also recommended at roadway locations with high bicycle traffic volume. Furthermore, it may be necessary to develop safety campaigns aimed at male, teenage and older bicyclists.  相似文献   

16.
Head-on crashes are among the most severe collision types and of great concern to road safety authorities. Therefore, it justifies more efforts to reduce both the frequency and severity of this collision type. To this end, it is necessary to first identify factors associating with the crash occurrence. This can be done by developing crash prediction models that relate crash outcomes to a set of contributing factors. This study intends to identify the factors affecting both the frequency and severity of head-on crashes that occurred on 448 segments of five federal roads in Malaysia. Data on road characteristics and crash history were collected on the study segments during a 4-year period between 2007 and 2010. The frequency of head-on crashes were fitted by developing and comparing seven count-data models including Poisson, standard negative binomial (NB), random-effect negative binomial, hurdle Poisson, hurdle negative binomial, zero-inflated Poisson, and zero-inflated negative binomial models. To model crash severity, a random-effect generalized ordered probit model (REGOPM) was used given a head-on crash had occurred. With respect to the crash frequency, the random-effect negative binomial (RENB) model was found to outperform the other models according to goodness of fit measures. Based on the results of the model, the variables horizontal curvature, terrain type, heavy-vehicle traffic, and access points were found to be positively related to the frequency of head-on crashes, while posted speed limit and shoulder width decreased the crash frequency. With regard to the crash severity, the results of REGOPM showed that horizontal curvature, paved shoulder width, terrain type, and side friction were associated with more severe crashes, whereas land use, access points, and presence of median reduced the probability of severe crashes. Based on the results of this study, some potential countermeasures were proposed to minimize the risk of head-on crashes.  相似文献   

17.
This study analyzes driver's injury severity in single- and two-vehicle crashes and compares the effects of explanatory variables among various types of crashes. The study identified factors affecting injury severity and their effects on severity levels using 5-year crash records for provincial highways in Ontario, Canada. Considering heteroscedasticity in the effects of explanatory variables on injury severity, the heteroscedastic ordered logit (HOL) models were developed for single- and two-vehicle crashes separately. The results of the models show that there exists heteroscedasticity for young drivers (≤30), safety equipment and ejection in the single-vehicle crash model, and female drivers, safety equipment and head-on collision in the two-vehicle crash models. The results also show that young car drivers have opposite effects between single-car and car–car crashes, and sideswipe crashes have opposite effects between car–car and truck–truck crashes. The study demonstrates that separate HOL models for single-vehicle and different types of two-vehicle crashes can identify differential effects of factors on driver's injury severity.  相似文献   

18.
Rear-end crash is one of the most common types of traffic crashes in the U.S. A good understanding of its characteristics and contributing factors is of practical importance. Previously, both multinomial Logit models and Bayesian network methods have been used in crash modeling and analysis, respectively, although each of them has its own application restrictions and limitations. In this study, a hybrid approach is developed to combine multinomial logit models and Bayesian network methods for comprehensively analyzing driver injury severities in rear-end crashes based on state-wide crash data collected in New Mexico from 2010 to 2011. A multinomial logit model is developed to investigate and identify significant contributing factors for rear-end crash driver injury severities classified into three categories: no injury, injury, and fatality. Then, the identified significant factors are utilized to establish a Bayesian network to explicitly formulate statistical associations between injury severity outcomes and explanatory attributes, including driver behavior, demographic features, vehicle factors, geometric and environmental characteristics, etc. The test results demonstrate that the proposed hybrid approach performs reasonably well. The Bayesian network reference analyses indicate that the factors including truck-involvement, inferior lighting conditions, windy weather conditions, the number of vehicles involved, etc. could significantly increase driver injury severities in rear-end crashes. The developed methodology and estimation results provide insights for developing effective countermeasures to reduce rear-end crash injury severities and improve traffic system safety performance.  相似文献   

19.
Accurate estimation of the expected number of crashes at different severity levels for entities with and without countermeasures plays a vital role in selecting countermeasures in the framework of the safety management process. The current practice is to use the American Association of State Highway and Transportation Officials’ Highway Safety Manual crash prediction algorithms, which combine safety performance functions and crash modification factors, to estimate the effects of safety countermeasures on different highway and street facility types. Many of these crash prediction algorithms are based solely on crash frequency, or assume that severity outcomes are unchanged when planning for, or implementing, safety countermeasures. Failing to account for the uncertainty associated with crash severity outcomes, and assuming crash severity distributions remain unchanged in safety performance evaluations, limits the utility of the Highway Safety Manual crash prediction algorithms in assessing the effect of safety countermeasures on crash severity. This study demonstrates the application of a propensity scores-potential outcomes framework to estimate the probability distribution for the occurrence of different crash severity levels by accounting for the uncertainties associated with them. The probability of fatal and severe injury crash occurrence at lighted and unlighted intersections is estimated in this paper using data from Minnesota. The results show that the expected probability of occurrence of fatal and severe injury crashes at a lighted intersection was 1 in 35 crashes and the estimated risk ratio indicates that the respective probabilities at an unlighted intersection was 1.14 times higher compared to lighted intersections. The results from the potential outcomes-propensity scores framework are compared to results obtained from traditional binary logit models, without application of propensity scores matching. Traditional binary logit analysis suggests that the probability of occurrence of severe injury crashes is higher at lighted intersections compared to unlighted intersections, which contradicts the findings obtained from the propensity scores-potential outcomes framework. This finding underscores the importance of having comparable treated and untreated entities in traffic safety countermeasure evaluations.  相似文献   

20.
Traffic crashes can be spatially correlated events and the analysis of the distribution of traffic crash frequency requires evaluation of parameters that reflect spatial properties and correlation. Typically this spatial aspect of crash data is not used in everyday practice by planning agencies and this contributes to a gap between research and practice. A database of traffic crashes in Seoul, Korea, in 2010 was developed at the traffic analysis zone (TAZ) level with a number of GIS developed spatial variables. Practical spatial models using available software were estimated. The spatial error model was determined to be better than the spatial lag model and an ordinary least squares baseline regression. A geographically weighted regression model provided useful insights about localization of effects.The results found that an increased length of roads with speed limit below 30 km/h and a higher ratio of residents below age of 15 were correlated with lower traffic crash frequency, while a higher ratio of residents who moved to the TAZ, more vehicle-kilometers traveled, and a greater number of access points with speed limit difference between side roads and mainline above 30 km/h all increased the number of traffic crashes. This suggests, for example, that better control or design for merging lower speed roads with higher speed roads is important. A key result is that the length of bus-only center lanes had the largest effect on increasing traffic crashes. This is important as bus-only center lanes with bus stop islands have been increasingly used to improve transit times. Hence the potential negative safety impacts of such systems need to be studied further and mitigated through improved design of pedestrian access to center bus stop islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号