首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Seven human prostate tumor models were established by transplanting tumor fragments in NMRI athymic nude mice. Once established, the tumors were serially transplantable in both NMRI and BALB/c nude mice. The xenografts originated from primary prostatic carcinomas (prostatectomy specimens), transurethral resection material, and metastatic lesions (pelvic lymph nodes and scrotal skin). Histological examination revealed that, in the course of several mouse passages (8 to 23), tumors retained their resemblance to the original patient material. The PC-295, PC-310, PC-329, and PC-346 tumors are dependent on androgens for their growth. The PC-324, PC-339, and PC-374 tumors are androgen independent, although growth of PC-374 tumors still seemed androgen sensitive. All tumors are diploid, except for the PC-374, which is tetraploid. The diploid PC-295 tumor has an additional small population of tetraploid cells. All xenografts displayed a heterogeneous expression pattern of the androgen receptor except for the PC-324 and PC-339 tumors in which the androgen receptor could not be detected. Prostatic acid phosphatase and prostate-specific antigen were retained during serial transplantation in all tumors but the PC-324 and PC-339. This panel of permanent human prostate tumor models comprises tumors representing both the androgen-dependent and -independent stages of human prostate cancer with various degrees of differentiation and, therefore, is of great value for the study of many aspects of growth and progression of human prostate cancer.  相似文献   

3.
4.
Androgen plays a critical role in regulating the growth and differentiation of normal prostate epithelia, as well as the initial growth of prostate cancer cells. Nevertheless, prostate carcinomas eventually become androgen-unresponsive, and the cancer is refractory to hormonal therapy. To gain insight into the mechanism involved in this hormone-refractory phenomenon, we have examined the potential role of the androgen receptor (AR) in that process. We have investigated the expression of AR and two prostate-specific androgen-responsive antigens, prostatic acid phosphatase (PAcP) and prostate-specific antigen (PSA), for the functional activity of AR in LNCaP and PC-3 human prostate carcinoma cells. Our results are as follows. (i) Clone 33 LNCaP cells express AR, PAcP, and PSA, and cell growth is stimulated by 5alpha-dihydrotestosterone (DHT). Stimulation of cell growth correlates with decreased cellular PAcP activity. (ii) In clone 81 LNCaP cells, the expression of PAcP decreases with a concurrent decrease in the degree of androgen stimulation of cell growth, whereas the expression of PSA mRNA level is up-regulated by DHT, as in clone 33 cells. Conversely, in PAcP cDNA-transfected clone 81 cells, an additional expression of cellular PAcP correlates with an increased stimulation by androgen, higher than the corresponding control cells. (iii) PC-3 cells express a low level of functional AR with no detectable PAcP or PSA, and the growth of PC-3 cells is not affected by DHT treatment. Nevertheless, in two PAcP cDNA-transfected PC-3 sublines, the expression of exogenous cellular PAcP correlates with androgen stimulation. This androgen stimulation of cell growth concurs with an increased tyrosine phosphorylation of a phosphoprotein of 185 kDa. In summary, the data indicate that the expression of AR alone is not sufficient for androgen stimulation of cell growth. Furthermore, in AR-expressing prostate cancer cells, the expression of cellular PAcP correlates with androgen stimulation of cell proliferation.  相似文献   

5.
Androgen withdrawal is a major therapeutic modality in the treatment of prostate cancer. Although tumors initially respond, they subsequently relapse, and these recurring tumors are androgen independent. To examine possible mechanisms to explain the androgen independence of prostate cancer, we have expressed cytokine response modifier A (CrmA), a competitive inhibitor of caspases, interleukin 1beta-converting enzyme-like proteases, which mediate apoptotic cell death, in the human androgen-dependent prostate cancer cell line LNCaP. LNCaP cells require androgens for continuous growth in culture and to form tumors in nude mice. The expression of CrmA in LNCaP cells prevented the decreased growth rate induced by androgen withdrawal in tissue culture. When CrmA-expressing LNCaP (LNCaP-CrmA) cells were implanted s.c. in nude mice, the tumors grew six times faster than parental cells. Androgen ablation by castration before tumor implantation suppressed the ability of control LNCaP cells expressing nonfunctional CrmA mutant (R291T) to form tumors, but LNCaP-CrmA cells formed tumors similar in size to those formed in normal mice. When orchiectomy was performed 10 days after tumor implantation, control LNCaP cells expressing a nonfunctional CrmA mutant (R291T) regressed, but LNCaP-CrmA tumors continued to grow. Thus, inhibition of caspases prevents androgen withdrawal-induced prostate cancer cell death, suggesting that caspase activation is normally an important part of this process.  相似文献   

6.
The androgen receptor (AR) was measured by an immunoblot assay in adult tissues of both male and female rats. Relatively high levels of AR were detected in tissues of the male urogenital tract and in the adrenal glands and gonads of both sexes. Another group of tissues, including the male levator ani/bulbocavernosus muscles, preputial gland, scrotal skin, and vagina, had low, but detectable, levels of AR. In a third group of tissues, including the uterus, kidney, spleen, liver, gut, heart, lung, pituitary, and hypothalamus, AR was undetectable. In some androgen target tissues, such as the penis, androgens cause an apparent disappearance of AR from the tissue, and in other tissues, such as the ventral prostate, androgen therapy increases the amount of detectable AR. We compared the effect of androgen on AR levels in the adrenal gland and ventral prostate, tissues that differ markedly in their trophic responses to androgen. Castration appeared to have no effect on the amount of detectable AR in the adrenal gland, whereas it caused a profound decrease in AR levels in the ventral prostate. By contrast, 7 days after hypophysectomy, AR levels declined in both the adrenal gland and the ventral prostate. The effects of hypophysectomy plus castration were similar to those of hypophysectomy alone. Administration of ACTH to hypophysectomized rats for 7 days did not reverse the effects of hypophysectomy on adrenal AR, nor did treatment with levothyroxine, dexamethasone, rat GH, or rat PRL. Treatment of hypophysectomized rats with 5alpha-dihydrotestosterone for 7 days caused a dramatic increase in the amount of detectable AR in both the ventral prostate and the adrenal gland, but had a trophic effect only in the ventral prostate. These findings suggest that the amount of immunoreactive AR detected in both the adrenal gland and the ventral prostate is enhanced by androgens: testicular androgens in the case of the ventral prostate and adrenal androgen in the case of the adrenal glands.  相似文献   

7.
8.
Normal (nonneoplastic) human prostatic secretory epithelial cells do not express the bcl-2 protein. However, a recent immunohistochemical survey of neoplastic human prostate tissues showed that a fraction of primary untreated prostate adenocarcinoma cells expressed this apoptosis-suppressing oncoprotein at significant levels (Colombel et al., Am. J. Pathol., 143: 390-400, 1993). Additionally, a number of hormone-refractory prostatic adenocarcinomas obtained from hormonally-treated patients (subsequent to surgical or drug castration therapy) were examined and were found to be uniform in their elevated expression of bcl-2 oncoprotein. The results of this preliminary survey imply that bcl-2 expression distinguishes a subgroup of primary human prostate cancers and that the expression of this protein might be a factor enabling prostate cancer cells to survive in an androgen-deprived environment. The current study was undertaken to determine the degree to which overexpression of bcl-2 can protect human prostate cancer cells from apoptotic stimuli in vitro and in vivo. Human prostate cancer cells (LNCaP) were transfected with a neomycin-selectable eucaryotic expression vector containing cDNA encoding human bcl-2. Transfected clonal variants that express bcl-2 protein (LNCaP/bcl-2) were unaltered with regard to their basal growth rate in 10% serum-containing medium, or with regard to their expression of the differentiated human prostate cell gene products prostate-specific antigen or androgen receptor protein. The bcl-2-transfected clones were altered, however, with regard to their growth rate in charcoal-stripped serum lacking dihydrotestosterone. Additionally, in contrast to the parental or control-transfected cell lines, LNCaP/bcl-2 cells were highly resistant to a variety of apoptotic stimuli in vitro including serum starvation and 10 nM phorbol ester (phorbol 12-myristate 13-acetate) supplementation of the medium. Lastly, the overexpression of bcl-2 by these prostate cancer cells altered their tumorigenic potential in a nude mouse assay. s.c. injections of 10(6) LNCaP/bcl-2 cells into male nude mice resulted in earlier and larger tumor formation compared to an equivalent injection of parental or control-transfected LNCaP cells. When these variant cell lines were injected into castrated male nude mice, only the LNCaP/bcl-2-transformed cells gave rise to tumors. Moreover, LNCaP/bcl-2 tumors grown in intact male nude mice were refractory to the growth-inhibiting effects of castration demonstrated by parental LNCaP cells. Data obtained in this study demonstrate that the bcl-2 oncoprotein can protect prostate cancer cells from apoptotic stimuli in vitro and suggest that such protection correlates with the ability to form hormone-refractory prostate tumors in vivo.  相似文献   

9.
10.
Age-dependent loss of androgen sensitivity of the rat liver is associated with a marked increase in dehydroepiandrosterone/hydroxysteroid sulfotransferase (rStd) activity. Sulfonated steroid hormones are known to be ineffective in binding receptor proteins. These observations suggest that intracellular androgen sulfonation can physiologically influence androgen action. We have examined the inhibitory effect of rStd on androgen action in the human prostate cancer-derived PC-3 cells transfected with the rat androgen receptor (AR) expression plasmid and two androgen-responsive promoter reporter constructs (murine mammary tumor long-terminal repeat ligated to chloramphenicol acetyltransferase (CAT) gene and rat probasin androgen response element (ARE) ligated to firefly luciferase (LUC) gene). These transfected cells were dependent on 5alpha-dihydrotestosterone (DHT) for the activation of both reporter genes and showed about a 200- and a 800-fold increase of CAT and LUC activity, respectively, at 10(-10) M DHT over the no-hormone control. Expression of the sulfonating enzyme in this cell transfection system via the rStd expression plasmid caused a dose-dependent decline in the reporter activity with approximately 90% inhibition of androgen action at a rStd:AR plasmid ratio of 100. From these results we conclude that irrespective of a high level of AR, changes in the Std expression can markedly alter the androgen sensitivity of target cells.  相似文献   

11.
12.
Cells possess within their epigenetic repertoire the ability to undergo an active process of cellular suicide termed programmed (or apoptotic) cell death. This programmed cell death process involves an epigenetic reprogramming of the cell that results in an energy-dependent cascade of biochemical and morphologic changes (also termed apoptosis) within the cell, resulting in its death and elimination. Although the final steps (i.e., DNA and cellular fragmentation) are common to cells undergoing programmed cell death, the activation of this death process is initiated either by sufficient injury to the cell induced by various exogenous damaging agents (e.g., radiation, chemicals, viruses) or by changes in the levels of a series of endogenous signals (e.g., hormones and growth/survival factors). Within the prostate, androgens are capable of both stimulating proliferation as well as inhibiting the rate of the glandular epithelial cell death. Androgen withdrawal triggers the programmed cell death pathway in both normal prostate glandular epithelia and androgen-dependent prostate cancer cells. Androgen-independent prostate cancer cells do not initiate the programmed cell death pathway upon androgen ablation; however, they do retain the cellular machinery necessary to activate the programmed cell death cascade when sufficiently damaged by exogenous agents. In the normal prostate epithelium, cell proliferation is balanced by a equal rate of programmed cell death, such that neither involution nor overgrowth normal occurs. In prostatic cancer, however, this balance is lost, such that there is greater proliferation than death producing continuous net growth. Thus, an imbalance in programmed cell death must occur during prostatic cancer progression. The goal of effective therapy for prostatic cancer, therefore, is to correct this imbalance. Unfortunately, this has not been achieved and metastatic prostatic cancer is still a lethal disease for which no curative therapy is currently available. In order to develop such effective therapy, an understanding of the programmed death pathway, and what controls it, is critical. Thus, a review of the present state of knowledge concerning programmed cell death of normal and malignant prostatic cells will be presented.  相似文献   

13.
The molecular mechanism of androgen-independent growth of prostate cancer after androgen ablation was explored in LNCaP cells. An androgen-dependent clonal subline of the LNCaP human prostate carcinoma cell line, LNCaP 104-S, progressed to a slow growing stage (104-R1) and then to a faster growing stage (104-R2) during more than 2 yr of continuous culture in the absence of androgen. Androgen-induced proliferation of 104-S cells is inhibited by the antiandrogen Casodex, while proliferation of 104-R1 and 104-R2 cells is unaffected by Casodex. This indicates that proliferation of 104-R1 and 104-R2 cells is not supported by low levels of androgen in the culture medium. Compared with LNCaP 104-S cells, both 104-R1 and 104-R2 cells express higher basal levels of androgen receptor (AR), and proliferation of these two cell lines is paradoxically repressed by androgen. After continuous passage in androgen-containing medium, 104-R1 cells reverted back to an androgen-dependent phenotype. The mechanism of androgenic repression of 104-R1 and 104-R2 sublines was further evaluated by examining the role of critical regulatory factors involved in the control of cell cycle progression. At concentrations that repressed growth, androgen transiently induced the expression of the cyclin-dependent kinase (cdk) inhibitor p21waf1/cip1 in 104-R1 cells, while expression of the cdk inhibitor p27Kip1 was persistently induced by androgen in both 104-R1 and 104-R2 cells. Induced expression of murine p27Kip1 in 104-R2 cells resulted in G1 arrest. Specific immunoprecipitates of Cdk2 but not Cdk4 from androgen-treated 104-R1 cells contained both p21waf1/cip1 and p27Kip1. This observation was confirmed by in vitro assay of histone H1 and Rb (retinoblastoma protein) phosphorylation by the proteins associated with the immune complex. Furthermore, inhibition of Cdk2 activity correlated with the accumulation of p27Kip1 and not p21waf1/cip1. From these results we conclude that androgenic repression of LNCaP 104-R1 and 104-R2 cell proliferation is due to the induction of p27Kip1, which in turn inhibits Cdk2, a factor critical for cell cycle progression and proliferation.  相似文献   

14.
A full length human androgen receptor complementary DNA was introduced into androgen receptor-negative PC-3 cells to determine if androgen sensitivity could be established in this cell line and to assess what influence, if any, androgen exposure would have on the growth of these cells. The androgen receptor complementary DNA was inserted into pSG5 in the region controlled by the SV40 promoter. This construct was cotransfected with pSR1neo into PC-3 cells and stably transfected cells were selected and screened for the expression of the androgen receptor. Active expression of the receptor was demonstrated by Western blotting using a rabbit anti-androgen receptor antiserum and by [3H]methyltrienolone binding to cytosol extracts. Saturation ligand-binding analysis revealed the presence of a single class, high affinity (Kd = 0.122 nM) androgen-binding site in cytosol extracts of transfected cells but not in extracts from mock-transfected cells. In cells expressing the transfected androgen receptor, androgen decreased the proliferation rate and cloning efficiency and induced a more differentiated phenotype. These results demonstrate that PC-3 cells have retained the mechanisms required to respond to the activated androgen receptor and that the loss of androgen sensitivity in these cells is due to the lack of functional androgen receptor. This also provides a technique for determining whether androgen-resistant tumor cells contain functional androgen receptors or whether androgen sensitivity is due to abnormalities in downstream signaling pathways. The apparent androgen-induced decreased malignant state of these transfected cells suggests new directions for the treatment of prostate cancer.  相似文献   

15.
16.
The role of androgens and the androgen receptor (AR) in the development and progression of breast cancer is poorly understood. To further define a potential model for androgen action in breast cancer, MDA-MB-453 cells, which express AR in the absence of oestrogen receptors and progesterone receptors, were further characterised in terms of AR expression and androgen responsiveness. High level expression of AR was confirmed by northern blot analysis, radioligand binding and immunocytochemistry, and could not be accounted for by AR gene amplification. Three endogenous androgen-responsive genes (fatty acid synthetase, gross cystic disease fluid protein of 15 kDa and prolactin receptor) and a transfected reporter gene, containing an androgen-responsive element, were induced following androgen administration. A synthetic androgen, mibolerone, induced moderate (27% above control) stimulation of MDA-MB-453 cell proliferation, which was abrogated by the simultaneous administration of the synthetic androgen antagonist, anandron, demonstrating that the effect was AR-mediated. In summary, MDA-MB-453 cells express high levels of functional AR, and thus provide a valuable in vitro model for further studies on androgen regulation of gene expression, and perhaps cell proliferation in breast cancer.  相似文献   

17.
A human prostate tumour cell line, LNCaP C4-2, when injected into athymic male nude mice, produced tumours containing: (1) only human cancer cells similar to those injected; (2) only murine stromal cells containing abnormal chromosome constitutions; or (3) both human prostate cancer cells similar to those injected and the transformed murine stromal cells with altered chromosome constitutions. Karyotypic analysis of murine metaphases from all the host-derived tumours showed mostly pseudodiploid chromosome constitutions, with multiple copies (amplification) of mouse chromosome 15 and the absence of a typical Y chromosome. Fluorescence in situ hybridization analysis of these murine cells, using a biotin-labelled total human DNA painting probe, further demonstrated the absence of human DNA and the presence of only mouse metaphase and interphase cells in these transformed stromal cells. These results suggest that cancer cells are capable of inducing neoplastic transformation in stromal cells of the host organ by some, as yet unknown, epigenetic mechanism(s).  相似文献   

18.
Estradiol-17beta (E2) acts through the estrogen receptor (ER) to regulate uterine growth and functional differentiation. To determine whether E2 elicits epithelial mitogenesis through epithelial ER versus indirectly via ER-positive stromal cells, uteri from adult ER-deficient ER knockout (ko) mice and neonatal ER-positive wild-type (wt) BALB/c mice were used to produce the following tissue recombinants containing ER in epithelium (E) and/or stroma (S), or lacking ER altogether: wt-S + wt-E, wt-S + ko-E, ko-S + ko-E, and ko-S + wt-E. Tissue recombinants were grown for 4 weeks as subrenal capsule grafts in intact female nude mice, then the hosts were treated with either E2 or oil a week after ovariectomy. Epithelial labeling index and ER expression were determined by [3H]thymidine autoradiography and immunohistochemistry, respectively. In tissue recombinants containing wt-S (wt-S + wt-E, wt-S + ko-E), E2 induced a similar large increase in epithelial labeling index compared with oil-treated controls in both types of tissue recombinants despite the absence of epithelial ER in wt-S + ko-E tissue recombinants. This proliferative effect was blocked by an ER antagonist, indicating it was mediated through ER. In contrast, in tissue recombinants prepared with ko-S (ko-S + ko-E and ko-S + wt-E), epithelial labeling index was low and not stimulated by E2 despite epithelial ER expression in ko-S + wt-E grafts. In conclusion, these data demonstrate that epithelial ER is neither necessary nor sufficient for E2-induced uterine epithelial proliferation. Instead, E2 induction of epithelial proliferation appears to be a paracrine event mediated by ER-positive stroma. These data in the uterus and similar studies in the prostate suggest that epithelial mitogenesis in both estrogen and androgen target organs are stromally mediated events.  相似文献   

19.
Polypeptide growth factors are positive and negative regulators of prostatic growth and function. Expression and biological effects of epidermal growth factor (EGF), transforming growth factors (TGFs) alpha and beta, fibroblast growth factors (FGFs), and insulin-like growth factors (IGFs) in the prostate have been extensively studied. EGF and TGF alpha, which share the same receptor, are strong mitogens for prostatic epithelial and stromal cells. Their paracrine mode of action in normal tissue and early-stage tumors is apparently altered towards an autocrine stimulation in hormone-independent tumors, which gain the ability to produce TGF alpha by themselves. TGF beta has a dual role in the regulation of prostatic growth. It inhibits growth of prostatic epithelial cells in culture and mediates programmed cell death after androgen withdrawal. However, advanced prostatic carcinomas become insensitive to the inhibitory effect of TGF beta. Several members of the FGF family have been identified in the prostate. They are mainly or exclusively expressed in the stromal cells, and stimulate the epithelial cells. In the rat Dunning tumor model, progression is accompanied by distinct changes in the expression of FGFs and their receptors. In the hyperplastic tissue, basic FGF (bFGF) is accumulated. This growth factor is also a potent angiogenic inducer, expression of which may determine the metastatic capability of a tumor. IGFs are paracrine growth stimulators in the normal and hyperplastic prostate. It is still under consideration whether prostatic cancer cells gain the ability to produce IGF-I by themselves and thus shift to an autocrine mode of IGF-I stimulation. Growth factors also interact with the androgen-signaling pathway. IGF-I in particular, other growth factors as well, can activate the androgen receptor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号