首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
采用改进的Othmer汽相单循环平衡釜,在常压下测定了正己烷-甲基环戊烷-N-甲基吡咯烷酮(NMP)三组分物系的汽液平衡数据。采用NRTL方程对实验数据进行关联,回归得到了NRTL方程的模型参数,汽相摩尔分数的实验值和计算值平均绝对相用对偏差为1.96%。萃取精馏正己烷-甲基环戊烷适宜的萃取剂与原料的质量比(溶剂比)为8。模拟结果表明,采用NMP为萃取剂、萃取精馏正已烷-甲基环戊烷适宜的条件为:溶剂比8、理论板数45、原料进料位置第26块塔板、萃取剂进料位置第7块塔板、回流比为2。在此条件下,塔顶馏分中正己烷的质量分数可达99.10%。  相似文献   

2.
《石油化工》2016,45(4):402
采用PRO-Ⅱ模拟平台,选择NRTL热力学方法,以二甲基亚砜、1-甲基-2-吡咯烷酮(NMP)、N,N-二甲基甲酰胺和乙二醇4种溶剂为萃取剂,采用萃取精馏法对高温费托合成C6馏分脱含氧化合物流程进行了模拟,并考察了V(萃取剂)∶V(C6馏分)、塔板数、进料位置、回流比等工艺条件对分离结果的影响。模拟结果显示,NMP为最佳萃取剂,最优模拟操作条件为:理论塔板数为30块、进料位置为第15块,回流比为2,溶剂比为2。采用实验室小型精馏塔对高温费托合成C6馏分进行实验验证。实验结果表明,塔顶采出液中的正丙醇+2-丁酮+丁醛的总含量小于0.1%(w),塔釜采出液中1-己烯含量小于0.1%(w),与模拟值吻合良好。  相似文献   

3.
《石油化工》2015,44(8):958
采用N-甲基吡咯烷酮(NMP)为萃取剂,对乙腈-正丙醇物系进行萃取精馏实验。采用Aspen Plus化工流程模拟软件,以改进的UNIFAC模型计算物性数据,对NMP法萃取精馏工艺进行模拟,考察理论塔板数、溶剂比(NMP与原料的质量比)、回流比等条件对分离效果的影响。萃取精馏塔的模拟结果与实验结果的偏差小于7.5%;模拟得到NMP法萃取精馏分离乙腈-正丙醇物系的优化工艺条件:萃取精馏塔的理论塔板数为35块、溶剂比为1.2、回流比为1.6,再生塔的理论塔板数为18块、回流比为1.5。在此条件下,乙腈产品中乙腈含量为99.6%(w),回收率为99.9%;正丙醇产品中正丙醇含量为99.8%(w),回收率为98.89%。  相似文献   

4.
胡松  杨卫胜 《石油化工》2013,42(7):775-779
采用化工流程模拟软件Aspen Plus,以NRTL模型计算气液平衡,对萃取精馏分离环氧丙烷-水-甲醇混合物的过程进行模拟。选择1,2-丙二醇为萃取剂,考察了萃取剂与原料的质量比(溶剂比)、萃取精馏塔理论塔板数、粗环氧丙烷进料位置、萃取剂进料位置、萃取剂进料温度和回流比对分离效果的影响。模拟结果表明,在满足环氧丙烷产品纯度为99.99%(w)的条件下,优化的工艺条件为:溶剂比0.45,萃取精馏塔理论塔板数30块,粗环氧丙烷进料位置第20块塔板,萃取剂进料位置第5块塔板,萃取剂进料温度45℃,回流比0.14。在此工艺条件下,环氧丙烷回收率为99.99%,单位产品热负荷为0.936 GJ/t。  相似文献   

5.
加盐NMP法萃取精馏分离裂解碳五馏分   总被引:5,自引:5,他引:0  
利用Aspen Plus流程模拟软件,以含NaSCN的N-甲基吡咯烷酮(NMP)为萃取剂,对加盐NMP法萃取精馏分离裂解碳五馏分(C5)的过程进行模拟计算。考察了萃取剂中盐含量、萃取剂进塔温度、回流比及萃取剂与C5进料的质量比(溶剂比)等因素对分离效果的影响。模拟结果表明,当萃取剂中NaSCN质量分数为2.17%、萃取剂进塔温度为40℃时,第一萃取精馏塔需要的理论塔板数由未加盐时的80块减少到60块,溶剂比由3.45降到1.77;当第二萃取精馏塔在回流比为2,需要的理论板数由未加盐时的120块减少到92块,溶剂比由7.90降到7.76;采用加盐NMP法萃取精馏分离C5,异戊二烯、双环戊二烯和间戊二烯的纯度分别为99.90%,98.90%,90.30%,收率分别为98.86%,94.99%,98.93%,比传统的二甲基甲酰胺法和NMP法均有所提高。  相似文献   

6.
《石油化工》2014,43(6):675
利用Aspen Plus流程模拟软件,对二甲基甲酰胺(DMF)法萃取精馏分离裂解碳五馏分(C5)的第一萃取精馏塔进行模拟,考察溶剂和C5的进料位置、溶剂比(DMF进料流量与C5进料流量的比)、回流比、溶剂进料温度等因素对分离效果的影响。与实际生产装置工艺参数的对比结果表明,模拟计算的结果准确、可靠。模拟结果表明,当溶剂进料位置为第4~5块塔板、C5进料为第26块塔板、溶剂比为6~7、回流比为3、溶剂进料温度为60~70℃时,第一萃取精馏塔的分离效果最佳。  相似文献   

7.
针对甲乙酮生产装置的丁烯提浓工艺过程,提出了采用质量比为1的甲乙酮(MEK)-N-甲酰吗啉(NFM)混合溶剂萃取精馏分离C4馏分中烷烃和烯烃的方法。采用Aspen Plus流程模拟软件建立了平衡级数学模型,并考察了萃取精馏塔和汽提塔(溶剂回收塔)理论塔板数、进料位置、回流比、溶剂比等参数对分离性能的影响。模拟结果表明,萃取精馏塔最佳工艺条件为理论塔板数90块、原料和萃取剂进料位置分别在第43和第6块理论塔板、萃取剂与原料质量比(溶剂比)13、回流比1.5;汽提塔最佳工艺条件为理论塔板数35块、进料位置在第10~20块理论塔板、回流比3.0,所得丁烷产品中正丁烷和丁烯产品中总丁烯质量分数分别在97%和98%以上,总丁烯产率大于98%。  相似文献   

8.
采用Aspen Plus软件对二氯甲烷废溶剂回收分离过程进行模拟研究,确定了萃取塔(T1)的理论塔板数、萃取剂水的用量、二氯甲烷精馏塔(T2)的进料塔板位置、回流比R及理论板数等。通过萃取和精馏分离提纯了二氯甲烷废溶剂中的二氯甲烷,在工艺参数:萃取塔(T1)的理论塔板数为8,萃取剂水与二氯甲烷废溶剂质量比为0.5,二氯甲烷精馏塔(T2)理论塔板数为20,实际塔板数取30为佳,二氯甲烷溶剂从16~18块塔板进料,侧线采出二氯甲烷,回流比R为1.5时,塔顶产品二氯甲烷的质量分数≥99.70%,水分≤0.15%。  相似文献   

9.
以离子液体1-乙基-3-甲基咪唑醋酸盐([EMIM][Ac])为萃取剂,对乙酸甲酯-甲醇共沸体系的萃取精馏过程进行了模拟。研究了原料进料位置、理论板数、萃取剂进料位置、回流比、溶剂比(萃取剂进料与原料进料摩尔流量的比值)等参数对萃取精馏过程的影响。模拟结果表明,乙酸甲酯的纯度随理论板数的增加先增加后趋于恒定,随萃取剂进料位置由塔顶向下移动而减小,原料进料位置、回流比和溶剂比存在最优值。利用模拟计算结果,获得了萃取精馏分离乙酸甲酯-甲醇共沸物的优化操作条件:理论板数27块,原料进料位置为第18块理论板,离子液体进料位置为第1块理论板,回流比为0.3,溶剂比为0.26。在此条件下,乙酸甲酯的纯度达到0.996 6。  相似文献   

10.
以水为萃取剂对二氯甲烷-丙酮混合物进行了萃取精馏过程模拟,体系的气-液平衡和液-液平衡分别采用Wilson模型和NRTL模型预测。分析了总理论板数,回流比,萃取剂进料速率、塔板数、温度和原料进料塔板数、温度等操作参数对精馏过程的影响。并取得了最佳工艺参数为:萃取塔采用36块理论板,回流比为3,原料在第16块板进料,萃取剂用量1 500kg/h,第7块板进料时塔顶得到二氯甲烷-水的共沸物,分层得99.9%的二氯甲烷,塔釜得到丙酮-水的混合物进入丙酮塔;丙酮塔为简单精馏塔,采用35块理论板,回流比为4,第25块板进料,塔顶可得99.7%的丙酮,塔釜得到几乎纯净的水,经冷却后可用作萃取塔的萃取水,循环套用。  相似文献   

11.
介绍了生产丁二烯的工艺方法,包括乙腈法(ACN法)、二甲基甲酰胺法(DMF法)、N-甲基吡咯烷酮法(NMP法)、C4馏分选择加氢脱炔烃法(KLP法)和丁烯生产丁二烯法,重点介绍了前3种方法的工艺特点和生产技术的研究开发进展。分析了国内外丁二烯的生产消费现状及发展前景,提出了我国丁二烯行业今后发展建议。  相似文献   

12.
脱除碳四中丁二烯和碳三的数学模型开发及应用   总被引:1,自引:0,他引:1  
依据甲乙酮装置对抽余碳四原料的质量要求 ,提出了用丁二烯选择加氢技术脱除原料中的丁二烯及用精馏技术脱出轻组份和加氢后剩余氢气的抽余碳四预处理工艺。开发了脱除抽余碳四中丁二烯和碳三过程的数学模型 ,进行了模拟计算 ,提出了选择加氢反应器和脱碳三塔的工艺设计基础数据。据此 ,进行了 2 4kt/a碳四预处理装置的工程设计 ,装置投运后一次开车成功。  相似文献   

13.
在自建的小型实验室脱硫装置,实验筛选出了最优的弱碱性物理吸附溶剂N-甲基吡咯烷酮(NMP),然后与铁基离子液体(Fe-IL)组成脱硫复配系统。在静态高压反应釜内,研究了Fe-IL复配体系对H2S脱除性能,建立相应H2S氧化反应动力学模型。结果表明:Fe-IL/NMP复配体系脱硫后溶液增重是纯Fe-IL的4.3倍;复配体系对H2S的吸收为快速拟一级反应,脱硫过程主要受液膜控制,提高温度及NMP的复配比,可强化对H2S的吸收;通过温度、压力、溶液复配比对吸收速率的影响实验,确定了脱硫反应指前因子A为21.26,活化能Ea为12.19kJ/mol;利用化学动力学模型,最终建立了相关化学吸收速率方程。  相似文献   

14.
以氧气作氧化剂,甲酸作催化剂,N-甲基吡咯烷酮(NMP)作萃取剂,采用催化氧化反应与溶剂萃取相结合的方法对催化裂化柴油进行了氧化萃取脱硫实验。通过单因素实验考察了催化剂用量,催化氧化温度、时间、氧气压力及萃取剂的用量等对催化裂化柴油硫含量的影响。通过实验得出最适宜的脱硫条件为:反应温度80℃;反应时间90min;充氧压力0.6MPa;催化剂体积分数为10%。经催化氧化,柴油硫质量分数可从1694.2μg/g降到190.8μg/g,脱硫率达到88.7%;在剂油比为1.0和室温条件下,用NMP三级萃取,柴油硫质量分数为37.5μg/g,小于50μg/g,达到欧Ⅳ排放标准的要求。  相似文献   

15.
Abstract

Vacuum distillates of an Egyptian crude oil were subjected to solvent extraction process applying N-methyl-2-pyrrolidone (NMP) and furfural as dearomatization solvents. The study shows that the extraction solvent together with the temperature and solvent-to-oil ratio have a significant effect on the yield and quality of produced lubricating oils. The optimum temperature for extracting light waxy distillates with NMP is 55°C at the solvent-to-feed ratio 2:1. These conditions are appropriate to remove the major portion of aromatics from the raffinate. The apparent activation energy (Ea), enthalpy (ΔH*), entropy (ΔS*), and free energy of activation (ΔG*) were calculated for the solvent dearomatization process.  相似文献   

16.
Abstract

Using solvent extraction, we studied the oil refining process of diesel fuel fraction (boiling range 212°C to 343°C) crude oil from the Suez oil petroleum company (Cairo, Egypt). We used organic solvents such as dimethylsulfoxide (DMSO), furfural, mixtures of N-methylpyrrolidone (NMP) + ethylene glycol (EG) as an antisolvent as well as dimethylformamide (DMF) + (EG). In addition, we determined the critical solution temperature (CST) of the examined solvents with the feedstock. The efficiency of pure and mixed solvents has been evaluated in terms of yield and characteristics of the raffinates obtained. We evaluated the selectivity (β) as well as the solvent power (K) of the examined solvents. The ternary miscibility diagrams of the systems' diesel fuel fraction (pure and mixed solvents) have also been determined.  相似文献   

17.
魏荣 《炼油与化工》2022,33(1):55-59
丁二烯是重要的石油化工原料,按照萃取溶剂的不同,丁二烯抽提技术主要有3种生产工艺:N-甲基吡咯烷酮法(NMP法)、二甲基甲酰胺法(DMF法)和乙腈法(ACN法).某公司在用2套丁二烯抽提装置,分别为丁二烯2套装置(DMF法)和丁二烯3套装置(NMP法).文中以此2套装置为例,参考2020年的生产情况和数据,围绕NMP法...  相似文献   

18.
以加氢裂化催化剂A的加氢裂化实验结果为基础,建立了减压蜡油加氢裂化六集总动力学模型。六集总的划分原则以实际加氢裂化产品切割方案为参照,具体划分如下:按固定馏程间隔把石油馏分(原料油和生成油)划分为六个集总,即减压蜡油-加氢裂化尾油(>360 ℃)、柴油馏分(290~360 ℃)、航空煤油馏分(175~290 ℃)、重石脑油(65~175 ℃)、轻石脑油(<65 ℃)和炼厂气(C4-)。在Matlab 2011b数值计算软件上,利用非线性最小二乘法对动力学模型参数进行了优化回归。通过统计分析,忽略了部分集总间的反应。模型预测所得加氢裂化产物收率与实验结果的最大偏差为1.80%,满足工业应用要求。  相似文献   

19.
以催化裂化副产C4和乙烯裂解C4为原料生产1-丁烯的方法   总被引:1,自引:0,他引:1  
为能与乙烯裂解副产碳四(C4)直接混合作为生产1-丁烯的原料,在现有处理工艺的基础为催化裂化副产C4增加了轻C4再分离和深度脱硫工序。分离出异丁烷后,催化裂化副产轻C4中异丁烯的质量分数将不小于33%。深度脱硫、净化、浓缩并选择性加氢后,催化裂化副产轻C4中硫的质量分数将小于1×10^-6,T-烯的质量分数将不大于10×10^-6,可直接与乙烯裂解副产C4丁二烯抽余油混合,在甲基叔丁基醚装置中发生醚化反应后精馏,可生产出聚合级1-丁烯产品。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号