首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(hydroxyethyl methacrylate)/silica (PHEMA/SiO2) hybrid organic–inorganic nanocomposites were prepared through the simultaneous polymerization of 2-hydroxyethyl methacrylate and tetraethoxysilane. PHEMA/SiO2 materials were obtained as monolithic and transparent films consisting of silica nanoparticles (diameter below 100 nm) surrounded by the PHEMA matrix. The films were crushed into fine powder and the PHEMA/SiO2 particles were used as filler of methacrylate monomers. The polymeric methacrylate present in the PHEMA/SiO2 hybrid particles improves the compatibility of the filler with the methacrylate monomer to be photopolymerized, resulting in enhanced wetting capabilities. The composites prepared from PHEMA/SiO2-prepolymerized particles offer the possibility of reduced polymerization shrinkage without severe reductions in flow characteristics of the precured polymers. The monomer conversions of composites prepared with either 30 or 60 wt% PHEMA/SiO2 particles were similar. This indicates that the penetration of visible radiation into the sample is not reduced significantly by the presence of the filler.  相似文献   

2.
《Advanced Powder Technology》2014,25(4):1304-1310
Grafting of poly(2-hydroxyethyl methacrylate) on silica nanoparticles was accomplished via the sequential UV-induced graft polymerization. Under UV-irradiation, the silica was functionalized with the surface initiator, benzophenone (BP) and subsequently graft-polymerized with 2-hydroxyethyl methacrylate (HEMA). The grafting on the silica particles was confirmed by DSC analysis which revealed a shift of the glass transition temperature (Tg) of grafted PHEMA to higher temperature than Tg of ungrafted PHEMA. A significant improvement in the grafting efficiency and the grafting percentage was achieved when a sequential grafting approach was taken, employing multiple UV exposures. Using this approach, the efficient chain extension from the grafted-PHEMA was possible without producing significant amounts of ungrafted PHEMA when low HEMA concentrations were used during each UV-exposure.  相似文献   

3.
A monomer that contained the RGD ligand motif was synthesized and copolymerized with 2-hydroxyethyl methacrylate using polymerization-induced phase separation methods to form poly(2-hydroxyethyl methacrylate)-based hydrogel sponges. The sponges had morphologies of aggregated polymer droplets and interconnected pores, the pores having dimensions in the order of 10 μm typical of PHEMA sponges. RGD-containing moieties appeared to be evenly distributed through the polymer droplets. Compared to PHEMA sponges that were not functionalized with RGD, the new sponges containing RGD allowed greater invasion by human corneal epithelial cells, by advancing the attachment of cells to the surface of the polymer droplets.  相似文献   

4.
Gd2O3:Tb(5%) nanoparticles were prepared via the polyol route and dispersed without any stabilizer in several ethyl methacrylate derivatives matrices such as poly(ethyl methacrylate), poly(2-methoxyethyl methacrylate) and poly(2-hydroxyethyl methacrylate) (PHEMA). Nanocomposites were obtained via free-radical polymerization of methacrylic monomers with ethylene glycol dimethacrylate as crosslinker and colloidal solution of Gd2O3:Tb(5%) nanoparticles. Best results are obtained with PHEMA in which the dispersed Gd2O3:Tb(5%) nanoparticles are spherical with a mean diameter of 15 nm, as measured by TEM. The obtained solid Gd2O3:Tb(5%)/PHEMA nanocomposites are highly transparent (in the visible spectral range) and exhibit characteristic photoluminescence of Tb3+ 5D4-7F(J) (J = 6-3), with 5D4-7F5 strong green emission at 536 nm upon UV excitation. The nanoparticles and nanocomposites have been well characterized by high-resolution transmission electron microscope (TEM), UV/Vis transmission spectra, photoluminescence excitation, and emission spectra.  相似文献   

5.
A collagenase-cleavable peptide-based crosslinking agent was synthesized and was incorporated into PHEMA sponges, and P[HEMA-co-MeO-PEGMA] gels and sponges [HEMA 2-hydroxyethyl methacrylate, PHEMA = poly(2-hydroxyethyl methacrylate), MeO-PEGMA = poly(ethylene glycol) monomethyl ether methacrylate]. PHEMA and P[HEMA-co-MeO-PEGMA] sponges had polymer droplet morphologies where the dimensions of the morphological features were three to five times larger compared to sponges that were crosslinked with tetraethylene glycol dimethacrylate (TEGDMA), while the P[HEMA-co-MeO-PEGMA] gels had similar morphologies regardless of the crosslinking agent. The differences in the dimensions of the morphologies of the sponges were attributed to differences in hydrophilicities of the crosslinking agent. When incubated in a collagenase solution, PHEMA sponges did not degrade, but P[HEMA-co-MeO-PEGMA] gels took 28 days to degrade and the P[HEMA-co-MeO-PEGMA] sponges took 101 days to degrade to 8% dry weight remaining. A cytotoxicity assay showed that the hydrogels do not elicit any cytotoxic response in vitro.  相似文献   

6.
The structural properties of microfiber meshes made from poly(2-hydroxyethyl methacrylate) (PHEMA) were found to significantly depend on the chemical composition and subsequent cross-linking and nebulization processes. PHEMA microfibres showed promise as scaffolds for chondrocyte seeding and proliferation. Moreover, the peak liposome adhesion to PHEMA microfiber scaffolds observed in our study resulted in the development of a simple drug anchoring system. Attached foetal bovine serum-loaded liposomes significantly improved both chondrocyte adhesion and proliferation. In conclusion, fibrous scaffolds from PHEMA are promising materials for tissue engineering and, in combination with liposomes, can serve as a simple drug delivery tool.  相似文献   

7.
Initiated chemical vapor deposition (iCVD), a low temperature variant of hot-wire chemical vapor deposition (HWCVD) is a solvent-free polymerization technique. It was used to synthesize thick, free-standing films of the hydrogel poly(2-hydroxyethyl methacrylate) (PHEMA). In this work, we show that the iCVD technique can yield PHEMA which is free from residual entrained monomer, has low non-specific protein adsorption and is capable of supporting good cell adhesion and proliferation.  相似文献   

8.
The adhesive interactions of block copolymers composed of poly(methyl methacrylate) (PMMA)/poly(acrylic acid) (PAA) and poly(methyl methacrylate)/poly(2-hydroxyethyl methacrylate) (PHEMA) with the proteins fibronectin, bovine serum albumin and collagen were studied by atomic force microscopy. Adhesion experiments were performed both at physiological pH and at a slightly more acidic condition (pH 6.2) to model polymer–protein interactions under inflammatory or infectious conditions. The PMMA/PAA block copolymers were found to be more sensitive to the buffer environment than PMMA/PHEMA owing to electrostatic interactions between the ionized acrylate groups and the proteins. It was found that random, diblock and triblock copolymers exhibit distinct adhesion profiles although their chemical compositions are identical. This implies that biomaterial nanomorphology can be used to control protein–polymer interactions and potentially cell adhesion.  相似文献   

9.
The low penetration depth and high sputter rates obtained using polyatomic primary ions have facilitated their use for the molecular depth profiling of some spin-cast polymer films by secondary ion mass spectrometry (SIMS). In this study, dual-beam time-of-flight (TOF) SIMS (sputter ion, 5 keV SF(5)(+); analysis ion, 10 keV Ar(+)) was used to depth profile spin-cast multilayers of poly(methyl methacrylate) (PMMA), poly(2-hydroxyethyl methacrylate) (PHEMA), and trifluoroacetic anhydride-derivatized poly(2-hydroxyethyl methacrylate) (TFAA-PHEMA) on silicon substrates. Characteristic positive and negative secondary ions were monitored as a function of depth using SF(5)(+) primary ion doses necessary to sputter through the polymer layer and uncover the silicon substrate (>5 x10(14) ions/cm(2)). The sputter rates of the polymers in the multilayers were typically less than for corresponding single-layer films, and the order of the polymers in the multilayer affected the sputter rates of the polymers. Multilayer samples with PHEMA as the outermost layer resulted in lowered sputter rates for the underlying polymer layer due to increased ion-induced damage accumulation rates in PHEMA. Additionally, the presence of a PMMA or PHEMA overlayer significantly decreased the sputter rate of TFAA-PHEMA underlayers due to ion-induced damage accumulation in the overlayer. Typical interface widths between adjacent polymer layers were 10-15 nm for bilayer films and increased with depth to approximately 35 nm for the trilayer films. The increase in interface width and observations using optical microscopy showed the formation of sputter-induced surface roughness during the depth profiles of the trilayer polymer films. This study shows that polyatomic primary ions can be used for the molecular depth profiling of some multilayer polymer films and presents new opportunities for the analysis of thin organic films using TOF-SIMS.  相似文献   

10.
The mesoporous titanium dioxide electrode of dye sensitized solar cells (DSSC) has been successfully filled with polymer electrolyte to replace the conventional liquid electrolyte. Polymer electrolyte was directly synthesized and deposited using the initiated chemical vapor deposition (iCVD) process, and an iodide-triiodide redox couple in different redox solvents was then incorporated into the polymer. We have investigated different candidate polymer electrolytes, including poly(2-hydroxyethyl methacrylate) (PHEMA). The open circuit voltage of cells fabricated with iCVD PHEMA was found to be higher when compared with a liquid electrolyte that is attributed to a lower rate of electron recombination.  相似文献   

11.
首先将偶氮类引发剂引到纳米二氧化硅的表面,然后以此为引发剂,以甲基丙烯酸叔丁酯基二硫代萘甲酸酯(TNPBE)为链转移剂(CTA),进行甲基丙烯酸β-羟乙酯的可逆加成-断裂链转移(RAFT)自由基聚合,制备了甲基丙烯酸β-羟乙酯/纳米二氧化硅(PHEMA/nano-SiO2)有机/无机杂化材料,并用红外光谱(FT-IR)、透射电镜(TEM)和热失重(TG)等方法对其结构和性能进行了表征与测试。研究结果表明,聚合物已经接枝到了纳米二氧化硅的表面,整个非均相体系中的聚合反应都是在链转移剂的作用下进行的,TG分析说明了此杂化材料的热稳定性良好。  相似文献   

12.
Hybrids of poly(2-hydroxyethyl methacrylate) (PHEMA), a polymer that has been employed in a wide variety of biomedical applications, and silica-gel, which exhibits a well-known bioactivity, were produced. The obtained hybrids were characterized and their in vitro ability to induce the formation of a calcium phosphate layer on the surface was evaluated. The surface area of hybrids decreased with increasing amounts of PHEMA so that hybrids with more than ~40% PHEMA are virtually non-porous. All hybrids induced the formation of a calcium phosphate layer on their surfaces when soaked into simulated body fluid. The induction time and the morphology of the apatite layer varied according to the polymer content.  相似文献   

13.
The adsorption characteristics of Cu2+ and Pb2+ ions onto poly2-hydroxyethyl methacrylate (PHEMA) and copolymer 2-hydroxyethyl methacrylate with monomer methyl methacrylate P(MMA-HEMA) adsorbent surfaces from aqueous single solution were investigated with respect to the changes in the pH of solution, adsorbent composition (changes in the weight percentage of MMA copolymerized with HEMA monomer), contact time and the temperature in the individual aqueous solutions. The linear correlation coefficients of Langmuir and Freundlich isotherms were obtained. The results revealed that the Langmuir isotherm fitted the experimental results better than the Freundlich isotherm. Using the Langmuir model equation, the monolayer adsorption capacity of PHEMA surface was found to be 0.840 and 3.037 mg/g for Cu2+ and Pb2+ ions and adsorption capacity of (PMMA-HEMA) was found to be 31.153 and 31.447 mg/g for Cu2+ and Pb2+ ions, respectively. Changes in the standard Gibbs free energy (ΔG0), standard enthalpy (ΔH0) and standard entropy (ΔS0) show that the adsorption of mentioned ions onto PHEMA and P(MMA-HEMA) are spontaneous and exothermic at 293–323 K.  相似文献   

14.
BaTiO3 nanoparticle/poly(2-hydroxyethyl methacrylate) (PHEMA) hybrid nanofibers were fabricated from an in situ synthesized BaTiO3 nanoparticle/polymer hybrid by electrospinning. The bulk hybrid for nanofibers was synthesized through the in situ hydrolysis of Ba–Ti alkoxide modified with 2-vinyloxyethanol and subsequent copolymerization with HEMA monomer. IR and 13C NMR spectra showed the formation of polymer matrix. The molecular weights of BaTiO3 nanoparticle/PHEMA hybrid for spinning were 1.3 × 105 for 20 equiv. PHEMA and 5.7 × 105 for 30 equiv. PHEMA. The crystallite size of BaTiO3 particles in the hybrid was 4.5 nm according to the Scherrer equation. The diameter of BaTiO3 nanoparticle/PHEMA hybrid nanofibers ranged from 500 nm to 1 μm. A field stress–strain curve was observed for the BaTiO3 nanoparticle/PHEMA hybrid nanofiber.  相似文献   

15.
A novel porous polymer-ionic liquid composite with poly(2-hydroxyethyl methacrylate) (PHEMA) and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6) has been synthesized by γ-irradiation without heat or chemical initiators. The products can be reversibly converted into organogels. The composites are potential candidates for electrochemical applications. The use of γ-radiation can be a simple and versatile alternative way to obtain these materials.  相似文献   

16.
Poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels are widely used as biomaterials. Due to their unique combination of biocompatibility and good mechanical properties, they have potential as scaffolds for tissue engineering applications. To this purpose, topographic and chemical patterning at the nano- to the mesoscale is crucial in order to favor and to characterize cell adhesion and proliferation. Here we report the characterization of as-prepared and patterned PHEMA hydrogels, produced by conventional radical polymerization in water and dimethylformamide. We have obtained chemical and morphological micro- and nanoscale patterning by atomic force microscopy based lithography. We also demonstrate that it is possible to incorporate carbon nanoparticles in the hydrogel matrix by supersonic cluster beam deposition.  相似文献   

17.
Natural network-structured hydrogels (e.g. bacterial cellulose (BC)) can be synthesised with specific artificial hydrogels (e.g. poly(2-hydroxyethyl methacrylate) (PHEMA)) to form a tougher and stronger nanofibre-reinforced composite hydrogel, which possesses micro- and nano-porous structure. These synthetic hydrogels exhibit a number of advantages for biomedical applications, such as good biocompatibility and better permeability for molecules to pass through. In this paper, the mechanical properties of this nanofibre-reinforced hydrogel containing BC and PHEMA have been characterised in terms of their tangent modulus and fracture stress/strain by uniaxial compressive testing. Numerical simulations based on Mooney-Rivlin hyperelastic theory are also conducted to understand the internal stress distribution and possible failure of the nanofibre-reinforced hydrogel under compression. By comparing the mechanical characteristics of BC, PHEMA, and PHEMA-based nanofibre reinforced hydrogel (BC-PHEMA) under the compression, it is possible to develop a suitable scaffold for tissue engineering on the basis of fundamental understanding of mechanical and fracture behaviours of nanofibre-reinforced hydrogels.  相似文献   

18.
Supermacroporous poly(2-hydroxyethyl methacrylate) (PHEMA) cryogel carrying DNA was used in the removal of anti-dsDNA antibodies from systemic lupus erythematosus (SLE) patient plasma. The PHEMA cryogel was prepared by bulk polymerization which proceeds in an aqueous solution of monomer frozen inside a plastic syringe. After thawing, the PHEMA cryogel contains a continuous matrix having interconnected macropores of 10–200 μm size. Pore volume in the PHEMA cryogel was 67.5%. Ester groups in the PHEMA structure were converted to imine groups by reacting with poly(ethyleneimine) (PEI) in the presence of NaHCO3. Amino (? NH2) content of PEI-modified PHEMA cryogel was determined as 82 mg PEI/g. Then, DNA was attached onto the PHEMA cryogel via amino groups (53.4 mg DNA/g cryogel). Anti-dsDNA-antibody concentration declined significantly from 780 IU/ml to 80 IU/ml with the time. The maximum anti-dsDNA-antibody adsorption amount was 70 × 103 IU/g. Anti-dsDNA-antibodies could be repeatedly adsorbed and eluted without noticeable loss in the anti-dsDNA-antibody adsorption amount.  相似文献   

19.
Water-soluble polymer brushes with multi-walled carbon nanotubes (MWNTs) as backbones were synthesized by grafting 2-hydroxyethyl methacrylate (HEMA) from surface functionalized MWNTs via in situ surface thiol-lactam initiated radical polymerization. MWNTs were functionalized with 2-mercaptoethanol and used as initiators in the polymerization of HEMA in the presence of butyrolactam. FT-IR, XPS, 1H NMR, GPC and TGA were used to determine chemical structure and the grafted polymer quantities of the resulting product. The covalent bonding of PHEMA to the MWNTs dramatically improved the water dispersibility of MWNTs. The average thicknesses of the polymer brushes in the functionalized MWNTs were detected with electron microscopy (SEM and TEM) and images indicated that the nanotubes were coated with polymer layer.  相似文献   

20.
An investigation of the preferential interaction of calcium ions with oxygen atoms in poly(2-hydroxyethyl methacrylate) (PHEMA)-based hydrogels has been carried out. The formation of polymer–Ca complexes was achieved by exposing powdered or fully hydrated samples with 5 mM, 0.1–0.5 M, or saturated CaCl2 solutions for certain periods of time. The characteristics of the polymer–Ca complexes were deduced from the effect of the solute on the equilibrium water content, and from NMR, atomic absorption and infrared spectroscopies. The absence of significant changes in the NMR chemical shift and infrared vibrational wavenumbers for the various functional groups confirmed that polymer complexation with Ca2+ ions involves only weak interactions, possibly electrostatic or ion–dipole interactions. Among the three types of oxygen atoms in PHEMA, hydroxyl oxygen atoms seem to be the most sensitive to the presence of Ca2+ ions. Complexation at the ester oxygen atoms was also evidenced by a new band in the infrared spectra at 1,550 cm-1. On the other hand, there were no indications that the hydrophobic domains in the backbone and the methyl groups at the side chain of PHEMA interact significantly with Ca2+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号