首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
对重组菌株Brevibacillus choshinensis/pNCMO2-SI摇瓶发酵产蔗糖异构酶进行研究,进一步探讨了3 L发酵罐不同发酵条件对菌体生长及产酶的影响。结果表明,摇瓶发酵后胞外酶活为50 U/mL,最优3 L发酵罐培养条件为:初始碳源为葡萄糖质量浓度10 g/L,初始氮源为多聚蛋白胨、牛肉浸膏质量浓度各15 g/L,发酵温度30℃,溶氧30%,在此条件下得到的最高酶活为275 U/mL。为了探索启动子对蔗糖异构酶表达的影响,分别选取来源于枯草芽孢杆菌的启动子Papr-E,Pnpr-E,Pamy以及来源于巨大芽孢杆菌的启动子Pxyl进行研究。结果表明,使用启动子Papr-E的表达量最高。进一步优化摇瓶发酵条件,重组菌株BCpNapr-SI摇瓶发酵的胞外上清酶活为137 U/mL,在此条件下进行3 L发酵罐发酵,最终发酵上清胞外酶活为485.5 U/mL,是未优化启动子的1.76倍。  相似文献   

2.
为了研究不同条件下重组短小芽孢杆菌产果聚糖蔗糖酶的最适条件以及利用重组酶转化蔗糖-乳糖制备低聚乳果糖的最适转化条件。以前期构建的产果聚糖蔗糖酶重组短小芽孢杆菌Brevibacillus brevis/pNCMO2-lsc作为菌种,通过单因素试验以及正交试验确定其最适产酶的发酵培养基为:葡萄糖20 g/L、氮源(工业酵母粉∶棉籽粉=2∶1,质量比)为40 g/L、CaCl_20.5 mmol/L,最适产酶温度30℃。在最优条件下发酵培养,果聚糖蔗糖酶的酶活可达62.1 U/mL,是优化前的3.69倍。利用该重组果聚糖蔗糖酶转化蔗糖-乳糖制备低聚乳果糖,在蔗糖和乳糖质量浓度均为200 g/L情况下,确定其最适转化条件:反应温度35℃,pH 6.0,加酶量为2 U/g底物,反应8 h后低聚乳果糖转化率可达39.1%。  相似文献   

3.
异麦芽酮糖是蔗糖的同分异构体,具有多种优秀的生理功能,广泛应用于食品行业。蔗糖异构酶可以将蔗糖异构为异麦芽酮糖,与其他微生物来源的蔗糖异构酶相比,Pantoea dispersa UQ68J来源的蔗糖异构酶转化蔗糖时异麦芽酮糖产率高,副产物少。为了更好地将异麦芽酮糖应用于食品领域,该研究将P.dispersa来源的蔗糖异构酶在食品安全微生物枯草芽孢杆菌(Bacillus subtilis)中重组表达,研究重组蔗糖异构酶的酶学性质并优化其制备异麦芽酮糖的反应条件。结果表明,重组酶的最适pH值为6.0,最适温度为30℃,在pH 5.0~8.0稳定性良好,在45℃下的半衰期为68 min。用该重组酶制备异麦芽酮糖,当蔗糖质量浓度为400 g/L,加酶量为20 U/g,在30℃、pH 6.0条件下转化10 h时,异麦芽酮糖产率可达90.61%,当蔗糖质量浓度提高到700 g/L,异麦芽酮糖产率仍可达89.20%。该研究提高了蔗糖异构酶的安全特性,实现了异麦芽酮糖的高产率,为工业生产异麦芽酮糖奠定了基础。  相似文献   

4.
以前期构建的产Bacilluscirculansβ-半乳糖苷酶重组大肠杆菌E.coli BL21(DE3)/pET-20b-lac为菌种,进行摇瓶发酵诱导培养,培养24 h胞外上清酶活达15 U/mL。利用制备的β-半乳糖苷酶粗酶液进行酶转化实验。优化了酶转化条件,考查了初始pH、反应温度、乳糖质量浓度、加酶量和反应时间等因素对低聚半乳糖产率的影响。确定最优转化条件为:初始pH 6.5、反应温度55℃,起始乳糖质量浓度为700 g/L,加酶量为8 U/mL。在此条件下反应16 h,低聚半乳糖转化率可达57%。  相似文献   

5.
分别利用IPTG和乳糖两种诱导物诱导蔗糖异构酶(SIase)基因在E.coliBL21(DE3)中实现表达,对诱导温度、诱导时机、诱导物浓度、诱导持续时间进行比较分析并优化,确定了二者的最佳诱导条件,在E.coli培养3h后(OD600约为0.9)添加终浓度为0.8mmol/L的IPTG(0.5mmol/L乳糖)在20℃(24℃)条件下诱导14h(12h)能获得最高的蛋白表达量及SIase酶活。在最优条件下以IPTG为诱导物时目的蛋白占总蛋白的41.6%,单位体积培养液中SIase酶活为12.37U/mL,以乳糖为诱导物时分别为27.2%,14.72U/mL,从收获酶活角度考虑可见乳糖作为诱导物的优势;而后利用海藻酸钠包埋法固定化重组菌,转化初始浓度为500g/L的蔗糖溶液,转化10~11h后异麦芽酮糖平均得率在83%以上,蔗糖平均转化率大于99%,固定化细胞能够连续稳定转化25批次,转化效率相对于原始菌提高了近55%。  相似文献   

6.
麦芽四糖淀粉酶可水解淀粉或麦芽糊精生成麦芽四糖,在食品领域有着广泛应用。为降低生产成本,对前期构建的生产麦芽四糖淀粉酶的重组枯草芽孢杆菌进行发酵优化。通过对培养基的氮源和碳源进行优化,以5%的接种量,在33℃、200 r/min条件下发酵48 h,发现以25 g/L豆粕粉和25 g/L工业蛋白胨为氮源,5 g/L甘油为碳源时,重组酶酶活力最高可达236 U/m L。利用发酵所得重组麦芽四糖淀粉酶制备麦芽四糖并进行酶反应条件优化,使用高效液相色谱检测产物含量。发现当酶转化反应温度为50℃,反应p H为7. 0,加酶量为30U/g底物,底物麦芽糊精的质量浓度为250 g/L时,反应12 h,麦芽四糖转化率可达73. 2%,为降低生产成本和工业制备麦芽四糖提供了理论依据。  相似文献   

7.
研究自行构建的产β-葡聚糖酶的工程菌E.coli BL21(DE3)-pET28a(+)-bgl在LB培养基中的生长特性,考察种子液的菌龄、培养基起始pH、接种量及诱导起始时发酵液菌浓度等对β-葡聚糖酶产生水平的影响;通过正交试验确定诱导剂IPTG及乳糖添加量、诱导温度及诱导剂作用时间.结果表明:培养基起始pH 7.0,对数生长中期的种子液(OD600为0.35)以接种量(体积分数)10%接入摇瓶发酵培养,37 ℃,200 r/min培养约3 h,菌液OD值达到1.0左右,添加终浓度分别为0.033 6 mmol/L的IPTG及10 mmol/L乳糖,24℃诱导6 h,发酵液清液中酶活达到最高(336.33 U/mL),菌体生长量为1.12 g/L,发酵液中总酶活达到459.32 U/mL,是原始菌株在相同条件下所产酶活的6.62倍.采用优化培养条件及诱导剂作用条件,重组菌在TB培养基中酶活水平进一步提高,诱导剂作用10 h,发酵清液中酶活为1 090.31 U/mL,总酶活1 570.83 U/mL,是原始菌在该条件下酶活的19.73倍,显示出重组菌具有广阔的工业化应用前景.  相似文献   

8.
本文对重组大肠杆菌产苯丙氨酸解氨酶的发酵条件和补料培养工艺进行了研究。摇瓶培养条件下,重组菌生长和产酶的最适初糖浓度为10g/L,酵母膏的最适添加量为5g/L,培养基最适初始pH值为7.5。采用10L发酵罐对该菌进行指数流加培养,24 h细胞干重达到到82.4 g/L,产酶量达到3477U/L,比摇瓶培养最好结果分别提高了14.2和11.2倍。  相似文献   

9.
为研究葡萄糖异构酶(GIase)在枯草杆菌中的表达效果,通过PCR扩增Thermobifida fusca GIase基因xyl A,分别克隆该基因序列到不同诱导表达方式的穿梭载体:p HCMC04、p MA09、p AL12,并转化枯草杆菌WB600。结果表明,含重组质粒p MA09-xyl A的枯草杆菌产酶最优,达到1.8 U/m L。对该重组枯草杆菌发酵产酶条件进行优化,以TB为发酵培养基,初始p H 7.0,温度为30℃时,摇瓶培养24 h后,GIase的产量达到5.6 U/m L。  相似文献   

10.
以壳聚糖为载体、戊二醛为交联剂,采用吸附交联法对重组短小芽孢杆菌来源的蔗糖异构酶进行固定化。以表观酶活力回收率为指标,对壳聚糖浓度、戊二醛加量、游离酶加量、固定化时间等条件进行了优化;并考察了温度、pH、固定化酶加量、反应时间以及底物浓度等因素对固定化蔗糖异构酶转化生产异麦芽酮糖的影响。结果表明,最佳固定化条件为:壳聚糖质量浓度3 g/dL、戊二醛加量(体积分数)0.75%、酶加量50 U/g、固定化时间16 h,此时固定化酶活力回收率达到70.3%;最佳转化条件为:温度30 ℃、初始pH 4.5、酶用量15 U/g,转化10 h,蔗糖质量浓度600 g/L,异麦芽酮糖最大产物得率达到87.8%。在最佳的转化条件下连续转化16次,产物得率仍保持在87.52%,显示该固定化酶具有良好的操作稳定性及较高的异麦芽酮糖合成能力。  相似文献   

11.
叶堂标 《纺织器材》2006,33(Z1):32-34
分析了传统的铸铁盖板骨架踵趾面耐磨性差的原因,通过研制加入微量元素的铸铁盖板骨架并进行试验论证,证明其踵趾面的耐磨性能明显提高。  相似文献   

12.
The incidence of disorders in the lipid and lipoprotein metabolism and the character of nutrition were studied in a non-organized population of males aged 20-59 (n-2888). Strictly standardized methods applicable in epidemiologic investigations were used. A reliable relationship has been revealed between the excessive consumption of fats, saturated fatty acids, cholesterol, saccharose, the insufficient content of polyunsaturated fatty acids, starch, ascorbic acid, retinol, and magnesium in the diets and the incidence of disorders in the lipid metabolism.  相似文献   

13.
嫩度是牛肉的重要品质指标,提高牛肉嫩度可以显著提高牛肉品质。大量研究表明,调节pH能有效改善牛肉嫩度、提高牛肉的品质,且该嫩化方法安全有效、成本较低,正在受到越来越多学者和企业的关注。本文综述了决定肌肉嫩度的主要因素、pH调节嫩化技术的机理及国内外pH调节改善牛肉嫩度的应用的研究进展,为新型牛肉嫩化技术的研究与应用提供参考。  相似文献   

14.
小麦陈化过程中淀粉酶活力变化的研究   总被引:2,自引:0,他引:2  
试验采用控制温度和湿度的人工陈化方法,促使小麦在温度为40℃、湿度100%的条件下加速陈化,并通过对陈化过程中小麦α-淀粉酶及总淀粉酶活力变化的测定,结合近几年粮食陈化机理的研究,探讨小麦中α-淀粉酶与总淀粉酶活性随陈化时间的变化规律。  相似文献   

15.
用于制醋的红曲生产技术   总被引:1,自引:0,他引:1  
红曲 ,也叫红米或红曲米 ,古代称丹曲 ,是我国福建、浙江、四川等地的特产 ,尤其是福建古田的红曲最闻名。红曲是红曲霉在蒸米上繁殖的曲。红曲霉不仅能分泌红曲霉红素、红曲霉黄素等色素 ,还能产生淀粉酶、糖化酶、酒化酶、蛋白酶、麦芽糖酶、果胶酶等多种活性酶类 ,以及抗菌活性物质、麦角固醇、某些药理活性物质等[1] 。作为着色剂 ,红曲或从红曲中提取的红色素主要用于红腐乳、红肠衣、糖果、糕点和药品等 ;作为糖化发酵剂 ,红曲主要用于酿酒和制醋 ;利用红曲中某些药理活性成分 ,红曲可以用作中药。红曲因用途不同 ,生产时选择红曲霉菌…  相似文献   

16.
凹印油墨的特性对印品质量的影响   总被引:1,自引:0,他引:1  
凹版印刷以其墨层厚实、立体感强、墨色一致、色泽均匀、印刷速度高、印版耐印率高而被广泛应用.凹版印刷所使用的油墨为液体油墨,其油墨的特性(粘度、细度、流动性、干燥性、耐光性)在印刷中对印品有着很大的影响.结合几年的凹印工作经验,简单谈谈凹印油墨的特性对印品质量的影响.  相似文献   

17.
18.
翻领成型器曲面为可展曲面,用微分几何方法描述了翻领成型器曲面的数学模型,推出了肩曲面为左右对称顶点不同的锥面时的圆形料管翻领成型器的交接曲线以及边界曲线的数学模型,并用Pro/E建立其三维曲面参数化数字模型,为翻领成型器其他截面形状、其他曲面形状的研究提供新的研究方法,为翻领成型器设计制造提供一定的理论依据。  相似文献   

19.
印刷滚筒采用斜齿轮传动是现代印刷机的基本要求,传动过程中必然在轴线方向产生一个分力,这个分力会使滚筒在轴向方向上产生一个较小的位移,即轴向串动。印刷过程中,滚筒的轴向位移量过大或过小,都会对印刷品产生不不良影响。同时,滚筒的轴向串动量是鉴定印刷机性能的重要指标之一。现代高速印刷机,对机械性能和滚筒的轴向串动量要求越来越高。为了解决在高速运转情况下,有效地掌握和控制滚筒轴向串动量,采用了激光多普勒测振仪,测试并分析各滚筒轴向串动量。以某四色印刷机作为测试对象,通过合理地在滚筒上选定测点,采集了的橡皮滚筒、压印滚筒及传纸滚筒的轴向振动信号,并通过求积分,得到各滚筒的在不同速度下的轴向串动量,并进行了分析,说明印刷速度越高,同种滚筒的轴向串动量越大,表明串动量的大小跟印刷速度有关。在相同速度下,橡皮滚筒与压印滚筒、传纸滚筒的串动量差距较大,表明滚筒串动量大小跟滚筒的装配结构有关,测试结果与滚筒的实际结构和装配情况一致,可作为控制串动量大小的依据。  相似文献   

20.
为提高空纱管安装效率,分析集体落纱细纱机特点,介绍了锭子杆盘结构型式,说明目前国内铝杆锭子多采用支持器弹簧加支持器帽的结构,虽能基本满足集体自动落纱细纱机的生产需要,但仍存在机械手安装空纱管时动作较多、动作精度不高、且易撞到锭子问题,易对锭子造成损坏并缩短锭子使用寿命的缺陷,重点对新设计的快速安装纱管的铝杆锭子的结构及原理进行分析,指出将弹簧支持器帽换成钢珠,可以大大缩短集体落纱细纱机机械手安装空纱管时间、降低对机械手动作精度的要求,且不损坏锭子、不影响锭子使用寿命,实现了节能降耗、安装效率高的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号