首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mg-Li-Al-Zn-RE合金铸态和退火态的组织与性能   总被引:2,自引:0,他引:2  
制备了Mg-xLi-5Al-1Zn-0.8RE系合金.研究了不同Li含量和均匀化退火工艺对Mg-xLi-5Al-1Zn-0.8RE系合金组织及性能的影响.结果表明,随着Li含量增加,合金的强度下降,塑性变形能力提高;随均匀化退火温度的升高和时间的延长合金中α相发生了融合和长大,显微硬度增加.  相似文献   

2.
采用真空电弧熔炼法熔炼出AlCoCrFeNi高熵合金,并在600℃、800℃、1000℃下进行了真空退火处理。利用XRD、SEM、EDS和电化学腐蚀试验对合金退火前后的微观组织以及在3.5%的NaCl溶液、0.5mol/L的NaOH溶液、0.5mol/L的H2SO4溶液中的耐蚀性进行了研究。组织分析表明合金在铸态和三种温度的退火态下均没有复杂结构的脆性金属间化合物生成;在铸态和600℃、800℃退火处理后合金均由简单的BCC结构构成,成树枝晶形态;在1000℃退火处理后,树枝晶消失,微观组织转变为短棒状的FCC析出相和BCC基体交替排列;在铸态及三种温度的退火态下,Co、Fe、Ni分布较均匀,Cr、Al存在一定的偏析,Al在铸态偏析最严重,Cr在800℃退火态偏析最严重。电化学腐蚀试验结果表明铸态和三种温度退火态的AlCoCrFeNi 合金在 3.5%的 NaCl 溶液和0.5mol/L 的 NaOH 溶液中的耐蚀性优良;在 3.5%的 NaCl 溶液中1000℃退火态的耐蚀性最好;在0.5mol/L 的 NaOH 溶液中,4种状态的合金耐蚀性相差不大;在 0.5mol/L H2SO4 溶液中,4种状态的合金都发生了钝化现象,1000℃退火态维钝电流密度最小,破钝电位最高,耐蚀性最好。  相似文献   

3.
利用X射线衍射仪、扫描电镜、电子背散射衍射、透射电镜以及拉伸实验,研究了FCC结构Al_(0.3)CoCrFeNi高熵合金经90%压下量轧制及退火后的组织和力学性能。结果表明:经轧制及退火(600~1000℃)后,合金发生再结晶,富集Al、Ni原子的有序BCC相优先形成于再结晶FCC相的晶界处,且其体积分数随着退火温度上升先增大后减小。轧制显著强化该合金,随后600℃退火可实现不牺牲均匀塑性而进一步强化该合金的目的,升高退火温度则引起该合金强度下降,塑性增大。经800℃退火后合金表现出较为理想的强度-塑性匹配,其均匀伸长率为34.1%,且抗拉强度可高达935MPa,约是铸态合金(303MPa)的3倍,这主要归结于再结晶组织细化及有序BCC相的析出强化。  相似文献   

4.
采用真空电弧炉在氩气保护下熔炼Al0.5Cr Co Fe Ni高熵合金,在不同温度(800~1100℃)下进行100 h的高温氧化实验,测定其氧化动力曲线,采用X射线衍射仪和扫描电镜等方法分析氧化层结构和形貌。结果表明:Al0.5Cr Co Fe Ni高熵合金在800和900℃形成的氧化膜较完整且致密,具有较为优异的抗氧化性能。在1000和1100℃形成的氧化膜较厚,膜内有大量裂纹与孔洞,抗氧化性能较差。氧化初期,界面反应起主导作用,随着氧化膜的生长,扩散过程发挥越来越重要的作用,成为继续氧化的控制因素,以致一种或多种合金元素氧化物在表面析出,形成尖晶石类内层氧化物Ni Cr2O4、Co Cr2O4、Fe(Cr,Al)2O4内氧化层。在高温氧化过程中,N2会参与反应,与Al发生较强反应,生成Al N颗粒,进一步的氧化过程使Al N再次氧化,N2逃逸,留下具有Al N外形的空洞。  相似文献   

5.
使用真空熔炼炉和激光熔覆设备制备了块状和涂层Al_2Ni_2TiCoCrCu_(0.5)FeMo高熵合金,使用扫描电镜、X射线衍射仪、显微硬度计分析了合金的组织结构和硬度。结果表明,两种方法制得的Al_2Ni_2TiCoCrCu_(0.5)FeMo高熵合金均为BCC结构,但涂层仅由一种BCC结构相组成;而真空熔炼的块体高熵合金则是由两种BCC结构相组成,其具有不同的成分但具有相同的晶格常数。退火处理使晶格常数减小,块体由0.291 6 nm变成0.290 3 nm;涂层由0.290 7 nm变成0.288 9 nm。激光熔覆制备的涂层比真空熔炼制的块体合金具有更高的硬度。退火处理消除了合金的内应力,从而导致硬度略有下降,涂层硬度(HV)由853.8降至798.6;块状合金硬度(HV)由664.7降至650.9。  相似文献   

6.
分别采用常规浇注和机械振动辅助浇注制备了铸态FeCoCuNi高熵合金。通过显微组织、高温力学性能和高温耐磨损性能的测试与分析发现:机械振动辅助浇注使合金组织细化、减少元素偏析,提高了合金的高温力学性能和高温耐磨损性能。与常规浇注相比,机械振动辅助浇注制备的合金在1000℃下的抗拉强度增加183%、屈服强度增加352%、断后伸长率增加6%、磨损体积减小72%。  相似文献   

7.
采用水冷铜坩埚真空感应悬浮熔炼制备了多组元高熵合金Al0.5Co Cr Cu Fe Ni,研究了不同热处理工艺对合金的显微组织和硬度的影响规律。结果表明,Al0.5Co Cr Cu Fe Ni高熵合金相结构简单,在铸态下由两种不同成分的FCC相组成,枝晶处为贫Cu的FCC1相,枝晶间为富Cu的FCC2相,显微组织为树枝晶形貌,存在一定的枝晶偏析。合金制备态的硬度为255 HV0.5。合金具有良好的热稳定性,随着热处理温度的升高,合金的相结构和硬度均无太大的变化。冷却方式对合金的显微组织和相结构影响不大,但炉冷后合金的硬度比空冷和水冷时高。  相似文献   

8.
采用激光熔覆在45钢基体上制备了CoCrFeNiB_(0.5)高熵合金涂层,研究了不同退火温度(700、900、1100℃)对涂层组织及性能的影响。结果表明,涂层激光熔覆态相组成主要为fcc相+少量bcc相,显微组织主要为枝晶组织;退火后,相组成转变为fcc+bcc+M_xB的混合相结构;700℃退火后,枝晶略有粗化,更高温度退火使枝晶断开,枝晶组织逐渐消失;1100℃退火后出现明显的颗粒化、球化相组织;激光熔覆涂层显微硬度较高,最高达到603 HV;700、900℃退火后,由于第二相析出强化,涂层显微硬度略有提高,但1100℃退火后涂层显微硬度下降;CoCrFeNiB_(0.5)涂层具有较高的腐蚀电位与较低的腐蚀电流密度,耐腐蚀性能明显优于45钢;1100℃退火后,3.5%NaCl溶液中腐蚀电流密度比45钢基体低3个数量级,具有较好的耐腐蚀性能。  相似文献   

9.
采用真空电弧熔炼法熔炼出Al0.8CoCrFeNiTi0.2高熵合金,并在600 ℃、800 ℃、1000 ℃下进行了真空退火热处理。利用X射线衍射仪(XRD)、光学显微镜(OM)、电子探针(EPMA)、硬度计、万能试验机以及电化学工作站对合金铸态和不同温度退火态的微观组织结构、硬度、压缩机械性能和在3.5wt.%的NaCl溶液、0.5mol/L的H2SO4溶液中的耐蚀性进行了研究。组织分析表明退火处理使合金的相组成和组织形貌都发生了改变,铸态下合金由BCC和FCC两相固溶体组成, 600 ℃、800 ℃和1000 ℃退火态下合金由BCC、FCC和σ相三相组成,800 ℃退火态中σ相析出最多。随着退火过程的进行,铸态下的单相固溶体树枝晶转变为了细小层片状的两相混合组织。在800 ℃及以下温度范围,退火温度越高,混合组织越细小,成分均匀性越好。但1000℃退火态有大块状单相固溶体析出,导致元素偏析重新加剧。硬度试验和压缩试验结果表明合金在铸态和三种温度退火态下都有较高的硬度、屈服强度、断裂强度和塑性变形量,表现出了良好的综合机械性能和抗回火软化能力。800 ℃退火态的硬度、屈服强度和断裂强度最高,铸态的塑性最好。电化学腐蚀试验表明铸态和三种温度退火态下的合金在3.5% NaCl溶液和0.5mol/L H2SO4溶液中都表现出了良好的耐蚀性, 800 ℃退火态的耐蚀性最好。  相似文献   

10.
采用电磁感应炉制备了Mg-13Gd-xNd-0.5Zr合金(x=0, 1, 2, 3 mass%),并结合X射线衍射仪、光学显微镜、扫描电镜、能谱仪、电子拉伸实验机等对合金的相组成、微观组织、元素分布、力学性能等进行分析测试。结果表明:Mg-13Gd-xNd-0.5Zr合金组织主要由α-Mg基体和Mg_5Gd、Mg_(41)Nd_5相组成,Mg_5Gd和Mg_(41)Nd_5相主要分布在晶界处;稀土元素Nd的加入能够细化合金组织,并引起α-Mg基体晶格畸变;当添加2%的Nd时,合金抗拉强度达到最高245 MPa,与不含Nd合金相比提高了16.33%。  相似文献   

11.
基于CoCrCu_(0.5)FeNi高熵合金塑性好但强度低的特点,在其中加入少量的B元素,制备了CoCrCu_(0.5)FeNiB_x(x=0.1,0.2,0.3,0.5)高熵合金,以研究B的加入对微观组织、相结构以及力学性能的影响。研究表明,CoCrCu_(0.5)FeNiB_x(x=0.1,0.2)高熵合金的组织主要由枝晶,枝晶间珊瑚状组织组成,当x≥0.3时,合金凝固前发生了液相分离,组织中出现了富Cu球状组织。CoCrCu_(0.5)FeNiB_x高熵合金的相结构主要由面心立方相和正交晶系相组成。CoCrCu_(0.5)FeNiB_(0.2)合金具有较佳的强度和塑性配合,其压缩强度和塑性分别为1400MPa和16%。  相似文献   

12.
研究制备Al_(0.5)CoCu_(0.5)NiSi(V、Ce)系列轻质高熵合金。分析了微量添加V与Ce对合金组织与力学性能的影响。结果表明:Al_(0.5)CoCu_(0.5)NiSi轻质高熵合金的物相结构为AlNi基bcc固溶体相+Ni_2Si或Co_2Si基δ脆性相。加入V或V和Ce微合金化后,最强衍射峰左移,晶格常数变大,但物相结构均保持不变。母合金抗压强度为1298MPa、断裂应变为2.22%、合金的塑性变形很小。加入V后,该合金的抗压强度相比母合金提高了将近270MPa、断裂应变为2.84%。在含V高熵合金中加入Ce后,该合金的抗压强度与母合金相当,断裂应变为4.29%。整体上3种合金的强度较高、塑性较差,可制备成粉末用于金属表面防护。  相似文献   

13.
采用非自耗真空电弧熔炼技术制备了 AlCrFeNiTi高熵合金,并对其进行了高温退火处理.通过X射线衍射仪、扫描电镜以及往复式电化学腐蚀摩擦磨损测试仪研究了铸态及高温退火后AlCrFeNiTi高熵合金组织结构和性能.结果表明:合金经过高温退火之后,物相组成并没有发生明显变化.退火后的合金晶间区域减小,"上坡扩散"的存在导致合金成分偏析现象仍然存在.同时,高温退火导致合金的硬度从434.16 HV下降到408.00 HV,摩擦系数从0.7420下降到0.3635,体积磨损量从9.7231 mm3增加到16.9675 mm3.上述性能上的变化与合金内部的成分偏析和组织结构的转变有密切关系.  相似文献   

14.
采用真空电弧炉熔炼和铜模吸铸法制备了CoFeNiVTi高熵合金柱状试样,并对其在氩气保护条件下进行了800℃退火20 h的处理。利用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)和压缩实验等研究了铸态和退火态CoFeNiVTi合金的显微组织和力学性能。结果表明:铸态合金为单相BCC固溶体结构,显微组织呈现典型的柱状晶特征,合金元素均匀分布;退火态合金由BCC基体和金属间化合物Ni2V3型的σ析出相构成,σ析出相具有明显的取向特征,呈粗大板条状和细小针状。与铸态合金相比,由于σ析出相的存在,退火后合金的断裂强度有所下降,但仍高达2.5 GPa,硬度则显著提高至800 HV0.2。  相似文献   

15.
采用粉末冶金工艺制备了AlCrMoTiNi和AlCrMoTiZr两种合金,采用X射线衍射仪、扫描电镜和数显硬度计对铸态和退火态合金的组织与硬度进行了分析。结果表明,AlCrMoTiNi合金由FCC和BCC固溶体组成,而AlCrMoTiZr合金由BCC相和金属间化合物组成,两种合金经700~1 000℃退火后,其物相和组织结构并未发生明显改变。AlCrMoTiNi和AlCrMoTiZr铸态合金的硬度(HV)分别为447和623,退火后最高硬度(HV)分别达到615和656。  相似文献   

16.
采用真空电弧熔炼法制备了Al_(0.8)CrFe_2Ni_x高熵合金(x为Ni与Cr的摩尔比),采用金相观察、X射线衍射、显微硬度检测和压缩试验等手段研究了Ni含量对其组织及力学性能的影响。结果表明,当x=0.50时,合金为B_2+BCC晶体结构,组织为树枝晶+胞状晶;当x=1.25时,合金晶体结构转变为单一的BCC结构,而组织变为单一的树枝晶;当x=2.00时,合金转变为FCC+BCC的混合结构,其组织转变为细小密集的片层状共晶组织;随着Ni含量继续增加,当x=2.75时,合金保持着FCC+BCC结构,而FCC相比例明显增加,并形成了完整连贯的树枝晶组织;Al_(0.8)CrFe_2Ni_x高熵合金的硬度随x的增加而降低,同时屈服强度减小、韧性增加。  相似文献   

17.
用传统铸造法制备了CoCrFeNiAl高熵合金,研究了不同退火温度对合金组织及性能的影响。结果表明,铸态的CoCrFeNiAl高熵合金为面心立方晶体结构(FCC)和体心立方晶体结构(BCC)的混合结构;随退火温度的升高,合金的晶体结构转变为FCC+BCC+Ordered BCC的混合结构;当合金温度达到800℃时,在枝晶之间开始析出AlNi_3、CrFe金属间化合物,合金的晶体结构转变为FCC+BCC+Ordered BCC+AlNi_3+CrFe的混合结构。CoCrFeNiAl高熵合金具有较高的硬度,并随着退火温度的升高,合金的硬度逐渐增大,硬度最高为463 HV0.2。CoCrFeNiAl高熵合金具有较好的室温压缩性能,铸态合金的压缩断裂强度、压缩率分别可达2275 MPa、18.8%。随着退火温度的升高,塑性逐渐降低,但强度逐渐增加,经600℃退火后,具有最佳的室温压缩性能,压缩断裂强度、压缩率分别为2631 MPa、12.5%。  相似文献   

18.
采用OM、XRD、SEM和电子拉力试验机,对Mg-(4%~16%)Gd二元合金的显微组织及力学性能进行测试分析,并采用"边-边匹配"模型研究了其强化机制。结果表明,随着Gd含量的增加,Mg-Gd合金铸态组织中的Mg5Gd相,由颗粒相转变为骨骼状,最后呈网状分布。Mg5Gd为Mg-Gd合金的高温强化相,使得合金室温及高温强度都有明显提高,最大抗拉强度在200℃可达到323.5 N/mm~2,250℃为305.3 N/mm~2。Mg5Gd相和α-Mg相的错配度为5.8%,表明Mg5Gd相为α-Mg相的形成提供有效的异质形核核心,阻碍了α-Mg相长大。  相似文献   

19.
采用X射线衍射仪、光学显微镜以及扫描电镜对铸态Mg-11Gd-3Y-xZn-0.5Zr合金显微组织进行观察分析,用拉伸试验机及布氏硬度计对合金力学性能进行测试,结果表明:铸态Mg-11Gd-3Y-0.5Zr合金的组织主要由α-Mg基体、Mg_5(Gd,Y)相和Mg_(24)(Gd,Y)_5相组成,晶粒较为粗大;在加入Zn元素后,合金由α-Mg基体、Mg_5(Gd,Y,Zn)相以及Mg_(12)Zn(Gd,Y)相组成;随着Zn元素加入量的增加,合金的晶粒先细化再粗化,抗拉强度、伸长率和布氏硬度值先升高后降低,当Zn含量为1.1%时,合金的抗拉强度、伸长率和布氏硬度达到最高值,分别为216.9 MPa、4.74%和84.37 HBW,合金的主要强化相为Mg_(12)Zn(Gd,Y)相,强化机制主要为细晶强化。  相似文献   

20.
采用真空电弧熔炼工艺制备了Cr_xCuFe_2Mo_(0.5)Nb_(0.5)Ni_2(x为Cr与Cu的摩尔比,分别为0、0.5、1.0、2.0)高熵合金,研究了合金在1mol/L H_2SO_4溶液中的耐腐蚀性能,并与S304不锈钢进行了比较。结果表明,合金中x=1.0或x=2.0时的腐蚀速率约为0.07mm/y,远低于x=0或x=0.5的合金及S304不锈钢,合金中x=0或x=0.5的腐蚀类型主要是沿晶腐蚀,而x=1.0或x=2.0的合金腐蚀类型主要是均匀腐蚀和点状腐蚀。x=0或x=0.5的合金中Cu、Nb、Mo的偏析程度较大,而x=1.0或x=2.0的合金中各元素分布相对均匀,因此原电池腐蚀程度相对较弱。极化腐蚀表明,x=2.0的合金具有最好的耐酸蚀性能,平均腐蚀速率仅为0.02mm/h,为S304不锈钢腐蚀速率的4%左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号