首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
原子层沉积(ALD)是一种新型的精确表层薄膜制备技术,具有沉积面积大、薄膜均匀、膜厚纳米级可控生长、低温性等特点,适用于纳米多孔和高深宽比基底材料,可应用于三维微纳结构器件的功能薄膜材料制备,广受国内外学术界和工业界的关注。综述了ALD技术发展历史和技术原理,介绍了ALD技术在微纳器件中的应用进展,涉及半导体微纳集成电路、微纳光学器件、微纳米生物医药等高新技术领域,对ALD技术当前存在的问题进行了分析,并展望了未来发展方向。  相似文献   

2.
正激光微纳加工是通过激光与材料相互作用,改变材料的物态和性质,实现微米至纳米尺度或跨尺度的控形与控性。由于激光微纳制造在能量密度、作用的空间和时间尺度、制造体吸收能量的可控尺度都可分别趋于极端,而使制造过程所利用的物理效应、作用机理完全不同于传统制  相似文献   

3.
金属材料抗反射表面在太阳能电池、光电子产品和军事隐身等领域具有广泛应用,制备微结构的金属抗反射表面具有极大地挑战性,通常这种结构是通过相当复杂和耗时的技术制备。 超快激光微加工技术刻蚀的微纳抗反射结构具有可控、稳定、环保且单步制备等特点,已成为近年来的研究热点。 梳理抗反射表面的理论模型及影响因素,概述国内外超快激光刻蚀抗反射表面的结构类型,提出未来超快激光制备金属微纳结构可能在太阳能电池的开发和利用、军事隐身及环保产品的应用等领域得到应用。 最后,总结超快激光刻蚀制备抗反射微纳结构表面存在的问题,并对超快激光加工微纳结构抗反射多功能表面的应用前景进行展望。 结果表明:超快激光在金属表面织构能够制备纳米、微米和微纳混合多种类型的微纳结构,实现了金属表面多种波段的超宽波谱的低反射率。 随着波长的增加,具有微纳米结构的金属表面的反射率比具有相对光滑结构的金属表面的反射率增加得更慢。 对超快激光制备金属抗反射表面在各领域的应用研究有一定的理论依据与参考意义。  相似文献   

4.
金属材料是医学植介入器件的主要应用材料之一,由于其具有离子溶出与生物惰性等缺点,因此如何提高植体表面的生物相容性与组织适配性成为金属生物材料领域的研究热点。在器件表面制备微纳结构,通过接触诱导机制对细胞及组织进行调控是改善金属植介入器件表面生物功能的重要研究方向之一。本文综合评述了金属植介入器件表面各种图案化微纳结构的制备技术与应用进展,并综述了接触诱导作用对成骨与血管内皮细胞、组织生长行为的调控以及对干细胞定向分化诱导等领域的研究进展。  相似文献   

5.
当材料切削厚度达到几个原子层时,微纳米切削实验变得困难且耗时,目前的实验条件根本无法实现.而分子动力学仿真却能克服这些困难,能十分方便地改变切削条件、刀具的几何形状和加工工件材料的性质.对基于分子动力学仿真的微纳米虚拟切削基本原理及其国内外研究的现状进行阐述.介绍了几种分子动力学可视化软件.虽然目前存在很多优秀的分子动力学可视化软件,可是没有一个是针对微纳米切削的,也不能观察温度场、应力分布等信息.分析了微纳米切削可视化研究存在的问题和发展趋势,指出微纳米加工可视化将成为探索微纳米加工机理最有效的手段.  相似文献   

6.
刀具磨损严重、服役寿命短仍然是切削加工所面临的难题。随着现代制造业的发展,钛合金、高温合金等难加工材料在工业中广泛运用。但由于这些材料具有低导热系数、变形系数小等特点,在机械加工中存在切削力和切削温度高、刀具磨损严重等问题,严重缩短了刀具的服役寿命。通过表面织构技术和表面涂层技术在刀具切削表面置入微纳织构和涂层可以显著改善切削性能;特别是在减小刀具磨损、降低切削力、切削温度以及刀-屑接触界面摩擦因数等方面具有显著效果。系统概述微纳织构涂层刀具的作用机理、切削性能以及应用领域,对微纳织构涂层刀具后续发展有重要推动意义。首先,介绍微纳织构涂层刀具的制备方式。其次,分析总结微纳织构涂层刀具的作用机理,并从抗磨损性、抗粘结性和刀具寿命三个方面总结微纳织构涂层刀具的自身性能。随后,从切削力、切削温度、刀-屑接触处的摩擦因数三个方面总结微纳织构涂层刀具的切削性能。最后对微纳织构涂层刀具在现代制造业中的应用进行阐述。提出在刀具切削表面同时置入微纳织构和涂层的当前研究现状以及未来发展方向,可为进一步研究微纳织构涂层刀具在切削加工中改善切削性能以及加工表面质量与性能提供参考。  相似文献   

7.
《铸造技术》2015,(4):851-853
研究了微-纳米多孔金属材料的制备工艺。结果表明,采用脱合金与Gasar工艺相结合的方法,获得试样的表面形成微-纳米级均匀排列的多孔结构,说明该方法是制备微-纳米级多孔金属材料的有效方法。  相似文献   

8.
海洋污损生物对船壳浸水表面的危害十分严重,基于表面微结构的防污技术是一种绿色防污方法,不会对海洋生态环境造成任何危害,近些年来得到了重点研究。文中分析了自然界中多种具有自清洁能力的动植物的表面微观结构特征;总结了表面微观结构防污机理研究方面的进展;阐述了几种现有的微观结构防污理论模型:ERI模型、纳米力梯度模型以及SEA模型。对当前常用的微米级结构、纳米级结构以及微纳复合结构的加工方法进行了综述;分析了目前微结构表面防污性能常用评价方法:实船试验方法、浅海浸泡试验方法、接触角试验方法、附着力测量试验方法以及生物附着试验方法。基于细菌、石莼孢子、硅藻和藤壶金星幼虫等典型海洋污损生物,对表面微结构的防污特性进行了分析,提出深入研究海洋污损生物的附着机理和表面微结构的防污机理,进而建立表面微结构的设计基准。多尺度微纳结构的快速精准加工和完善防污性能评价体系,是表面微结构防污发展中面临的难题和未来发展方向。  相似文献   

9.
简要介绍了块体纳米晶金属材料的制备技术及其特点,讨论了块体纳米晶金属材料的强度、硬度、塑性、热稳定性方面存在的问题以及解决方法。分析了在纳米晶金属材料中可能存在的各种变形机理,并探讨了纳米金属材料的发展趋势。  相似文献   

10.
金刚石由于其独特的性质成为未来科技的重要材料,但较差的表面质量会影响其在高科技领域的应用,因此实现金刚石超精密加工是提高金刚石应用的关键。化学机械抛光(CMP)是集成电路中获得全局平坦化的一项重要工艺,能够实现金刚石的超精密加工。介绍了现有的金刚石加工方法和金刚石化学机械抛光的研究现状,并与其他的加工方法(机械抛光、摩擦化学抛光、热化学抛光等)进行了对比,其他加工方法存在加工后表面损伤严重、加工表面粗糙度无法满足需要等问题。金刚石的化学机械抛光工艺经历了由高温抛光向常温抛光的发展过程,该加工方法设备简单、成本低、抛光后的表面粗糙度(Ra)可以达到亚纳米级别。此外,金刚石的分子动力学模拟(MD)使人们从原子尺度对金刚石抛光过程中纳米粒子的相互作用和抛光机理有了深入了解。虽然金刚石化学机械抛光还存在着许多亟待解决的问题,但是其发展前景依旧十分乐观。  相似文献   

11.
在润滑油中添加纳米颗粒可以有效减少摩擦磨损,大多数研究只集中在纳米颗粒的性质对摩擦性能的影响,很少考虑到颗粒粒径与表面粗糙度对摩擦性能的耦合作用。采用分子动力学(MD)模拟和试验的方法研究纳米铜颗粒添加剂粒径对润滑油摩擦性能的影响。建立具有凸峰和凹槽的粗糙壁面边界润滑MD模型,模拟300MPa下两固体壁面相对剪切速度为5 m/s时,5种粒径的纳米Cu颗粒分别在不同粗糙度壁面下的力学性能。定量计算出摩擦表面的应力、磨损量、摩擦力、正压力和摩擦热。同时,采用微纳米划痕仪测量含纳米Cu颗粒润滑油的摩擦因数。结果表明,颗粒的粒径和壁面粗糙度对润滑油的摩擦性能具有耦合作用;在剪切过程中纳米颗粒会填充壁面凹坑、形成保护膜、减少摩擦磨损、提高承载能力和降低壁面摩擦热。当壁面粗糙度较小、处于边界润滑状态时,Cu颗粒添加剂会增大体系的摩擦力;当壁面粗糙度较大、处于混合润滑状态时,Cu颗粒添加剂会减小体系的摩擦力;当颗粒粒径与壁面凹槽深度的比值D/h在1.05~1.12范围内,即颗粒直径略大于凹槽深度时,润滑油的摩擦性能最优,摩擦力和磨损量较小、油膜承载能力最大。分子动力学模拟和试验相结合,建立微纳观结构...  相似文献   

12.
裴阳阳  宋青  李鹏 《表面技术》2019,48(7):200-210
介绍了天然抗菌微纳结构的特点及抗菌效果,从灵感来源、基底材料、构建方法、表面特性和结构、抗菌效率六个方面,总结了利用不同技术模拟蝉和蜻蜓的翅膀、蛾眼和壁虎皮肤微纳结构的仿生研究进展。阐述了材料表面微纳结构的形貌和粗糙度对抗菌效率的影响,发现具有多层次、间隔紧密、尖锐纳米柱结构的表面对革兰氏阳性和革兰氏阴性菌均表现出较强的抗菌活性。微纳结构抗菌表面与细菌相互作用,破坏细胞壁/膜,导致细菌死亡,该抗菌机制是物理机械性的,避免了细菌耐药性的产生。该综述为今后仿生微纳结构抗菌表面的发展提供了理论基础,并提出了未来的研究思路和发展方向。  相似文献   

13.
工程零部件失效常源于表面,微组织结构显著影响甚至决定工程零部件使役性能,表面纳米化技术可诱导材料微组织结构变化产生纳米晶结构表面层,增大表层残余压应力,对材料性能有极其重要的影响。首先综述了表面纳米化诱导微组织结构变化的过程及机理,诱导材料产生晶粒细化、位错运动、残余压应力增大、相变等微观变化,诱因有塑性变形、温度变化、元素渗入等。其次归纳了表面纳米化对材料性能的影响及其机理,上述微观变化对材料疲劳强度、耐腐蚀性、摩擦磨损性能、生物学性能等产生显著影响。总结了各个典型表面纳米化工艺的特点,相比于其他表面纳米化技术,超声振动辅助加工具有不需引入其他元素、不污染环境、原理简单、高速高质量、成本低廉、可依托于各种传统加工工艺等优势,对材料摩擦磨损性能、疲劳性能、生物学性能、表面浸润性和耐腐蚀性等具有积极作用。最后对表面纳米化工艺的未来发展做了展望,其中针对性分析了超声振动辅助加工。针对纳米晶结构表面层的数字化仿真模拟极其匮乏这一现状,将模拟仿真与试验相结合,分析微组织结构与加工参数、微组织结构与材料性能的映射关系并建立模型直观反映尚需更全面系统的研究。材料的某些性能可能不会同时达到最优值,依...  相似文献   

14.
纳米LiFePO4正极材料由于具有颗粒小、比表面积大的优势,是改善其动力学性能的有效手段,但由于较差的加工性能使其发展受限。通过纳微组装制备一次粒子为纳米颗粒,二次粒子为微米颗粒的微纳米LiFePO4正极材料可以改善纳米材料的加工性能。本文综述了近期微纳米LiFePO4正极材料的研究方向,主要介绍了规则形貌的微纳米LiFePO4正极材料的研究进展。  相似文献   

15.
超疏水表面在防污减阻、油水分离、生物医用等领域应用广泛,在摩擦发电蓝色能源收集领域展现出新的应用前景,但其大面积制造及结构形貌的精确调控仍充满挑战。提出光刻和模塑成形相结合的微纳多级表面的可控制造工艺,分别以光刻工艺制造的微米孔和V形孔阳极氧化铝纳米孔为微米尺度和纳米尺度模板,采用一步模塑成形工艺实现微纳多级表面的构建,并通过改变模板尺寸简易并精确调控微纳多级表面的形貌和结构尺寸。通过接触角测量仪分析发现,相比单级纳米表面和单级微米表面,构建的微纳多级表面疏水性能显著提升,并实现超疏水,静态接触角最高达158°,滚动角仅为2°。最后开展超疏水微纳多级表面在水能收集方面的应用研究,采用搭建的固-液摩擦纳米发电测试装置分析表面结构对摩擦电输出性能的影响。结果表明:相比平膜和单级微米表面,微纳多级表面由于摩擦面面积增加和疏水性能增强产生更加优异的电输出信号。当水流速度为8 mL/s时,微纳多级表面的输出电压峰值最高为46 V,短路电流峰值最高为6.3μA。提出了一步模塑成形工艺,实现了超疏水微纳多级表面的大面积、可调控制造,基于微纳多级表面构建的固-液摩擦纳米发电机有望应用于水能收集、自驱动传感等领域。  相似文献   

16.
采用水热合成-煅烧的方法,通过自组装过程,制备具有微纳分级结构的NiO中空微球。所制备的微纳分级结构NiO微球由许多NiO纳米片相互堆叠而成,颗粒粒径大约为2~3μm。NiO纳米片边缘清晰,片长约为500~700 nm,厚度仅为40~50 nm。这种独特的微纳分级结构使得NiO材料具有相互贯通的孔道,这有利于电解质离子和电子的扩散和迁移。所制备的微纳分级结构NiO电极材料具有优越的电化学性能,在1 A/g的电流密度下比电容可达到1340 F/g,且循环1000次后,容量保持率为96.5%。同时,对氧化镍电化学电容器的导电机理进行探究。  相似文献   

17.
利用去除晶胞的方式在单晶硅100晶面的表面构建不同结构的光栅微纳结构及方柱阵列微纳结构,同时采用MD数值模拟方法,结合疏水结构模型,建立适用于光栅及方柱阵列微纳结构的结构模型,将理论接触角与仿真测量接触角对比并分析,从微观尺度上验证试验结果,得出两种结构参数对表面疏水性能的影响。研究结果表明:在去除一层晶胞的前提下,方柱阵列微纳结构的接触角为131°,其疏水性能更强。而结构参数在Cassie-Baxter模型条件前提下,疏水性能随着疏水结构间的间距宽度增加而增大,随疏水结构宽度增大而减小。  相似文献   

18.
利用纳米压入的反演分析法确定金属材料的塑性性能   总被引:2,自引:0,他引:2  
建立了一种确定金属材料塑性性能的方法,即利用有限元数值模拟对纳米压入过程进行反演分析,确定金属材料的屈服极限和应变强化指数.首先在不考虑材料加工硬化的情况下,对纳米压入过程进行反演修正模拟,当模拟曲线同正向分析曲线相吻合时,确定金属材料的代表性应力;其次在考虑不同应变强化指数的情况下,采用相同的方法确定金属材料的代表性应变;最后结合量纲分析确定金属材料的应变强化指数,继而确定金属材料的屈服极限.经过实验验证,该方法具有较高的精度.  相似文献   

19.
正由中国科协主办,中国机械工程学会特种加工分会协办,北京交通大学、江西理工大学和西北工业大学承办的中国科协"微纳制造技术研究与应用"青年科学家论坛将于2014年10月18-19日在北京交通大学召开。本次论坛将就微纳制造技术研究与应用多个领域的现状与趋势进行研讨,欢迎国内外微纳制造技术  相似文献   

20.
颜兴艳  陈广学 《表面技术》2018,47(3):101-107
目的提出一种在金属表面制备可控的微纳结构的方法,改善金属表面的疏水性。方法利用丝网印刷快速制备可控微细图案,电解加工快速加工出微细结构,化学氧化法制备出纳米结构,从而成功地在铜表面制备了具有微米纳米复合结构的超疏水表面。在此过程中,首先通过丝网印刷辅助电解加工制备有序微圆柱阵列,然后利用化学氧化在微圆柱表面制备纳米结构,通过扫描电子显微镜(SEM)和接触角来表征铜表面的超疏水性能,用质量变化法研究了铜表面的抗结霜性能。结果丝网印刷的圆形掩膜直径为140~160μm,电解加工后,圆柱直径为130~140μm,高度为15μm左右。SEM测试结果表明,用15wt%FeCl_3溶液进行蚀刻,在铜表面出现了圆柱阵列的微纳复合结构。用氟硅烷乙醇溶液改性微纳复合结构圆柱阵列铜表面时,最大接触角为155°,表现出超疏水性能。抗结霜测试表明,所测试的超疏水表面的抗结霜性能显著增强。结论印刷电解法可以制备出形状和尺寸可控的微结构,对微结构进一步处理可得到微纳复合结构。该结构可以构成超疏水表面,且具有抗结霜性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号