首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以聚合氯化铝(PAC)生产过程中铝钙粉浸出渣为原料,通过酸浸-焙烧-水热晶化工艺制备沸石,并研究其对锌冶炼废水中重金属的去除效果。结果表明:铝钙粉浸出渣通过酸浸-焙烧-水热晶化过程,当原料n(SiO_2)/n(Al_2O_3)=2时,产物物相为结构完整的A型沸石;当原料n(SiO_2)/n(Al_2O_3)=6时,产物物相为结构完整的P型沸石。拟二级动力学方程计算得到A型沸石对Zn~(2+)、Cd~(2+)的平衡吸附量分别为97.09、12.39 mg/g,P型沸石对Zn~(2+)、Cd~(2+)的平衡吸附量分别为57.84、10.82mg/g。Freundlich吸附等温线拟合结果表明,A型沸石和P型沸石吸附Zn~(2+)、Cd~(2+)机理均为非均相表面的复杂吸附。当废水pH为8、吸附温度为25℃、吸附时间为150 min时,采用A型沸石处理锌冶炼废水,产渣量为1.1 g/L,废水中Cu~(2+)、Pb~(2+)、Zn~(2+)、Cd~(2+)、总砷(AsT)浓度分别由1.68、13.12、147.00、15.14、4.06 mg/L降至0.06、0.05、0.52、0.03、0.01 mg/L,达到《铅、锌污染物排放标准》(GB25466—2010)。  相似文献   

2.
以PAC生产过程中铝钙粉浸出渣为原料,采用盐酸和氢氧化钠进行活化,并对其在锌冶炼废水中吸附重金属的性能进行研究。考察铝钙粉浸出渣及其活化产物结构、比表面积、孔结构的变化,分析了pH值、吸附时间和重金属浓度对其吸附性能的影响,并以氢氧化钠活化产物为吸附剂进行了工业实验。结果表明:铝钙粉浸出渣经盐酸和氢氧化钠活化后,其结构均由岛状变为层状。铝钙粉浸出渣、盐酸活化产物和氢氧化钠活化产物的比表面积分别为21.8、63.1、28.1 m~2/g,BJH孔径分别为36.06、43.54和236.35 nm,孔容分别为0.03、0.09和0.14cm~3/g。pH=8,吸附温度为25℃,吸附时间为150min时,由Langmuir方程得到铝钙粉浸出渣对Cd~(2+)、Zn~(2+)和As(V)的饱和吸附量分别为2.81、497.57和2.45mg/g,盐酸活化产物对Cd~(2+)、Zn~(2+)和As(V)的饱和吸附量分别为3.44、516.32和2.04 mg/g,氢氧化钠活化产物对Cd~(2+)、Zn~(2+)和As(V)的饱和吸附量分别为7.64、526.32和4.72 mg/g。工业实验结果表明:吸附过程具有化学吸附特征,废水中Cu~(2+)、Pb~(2+)、Zn~(2+)、Cd~(2+)和As(V)的浓度由1.68、13.12、147.00、15.14和1.56 mg/L降至0.01、0.05、0.52、0.03和0.02 mg/L,达到《铅、锌污染物排放标准》(GB25466—2010)。  相似文献   

3.
橘子皮化学改性及其对Cu(Ⅱ) 离子的吸附性能   总被引:1,自引:0,他引:1  
以橘子皮为基体,经环氧氯丙烷交联后,以Ce4+为引发剂将丙烯酸甲酯单体接枝到橘子皮上,再经过皂化制备改性橘子皮生物吸附剂.研究溶液pH、吸附时间和Cu2+初始浓度对生物吸附剂吸附性能的影响.结果表明,在pH值为5.5,Cu2+初始质量浓度为50 mg/L,吸附时间为3 h的条件下,该生物吸附剂对Cu2+去除率为94.6%,吸附容量为24.41 mg/g.Cu2+在该生物吸附剂上的吸附过程可以用准二级动力学方程很好地描述.吸附等温线结果表明,该生物吸附剂对Cu2+的吸附用Freundlich方程拟合效果优于用Langmuir方程拟合效果.将该生物吸附剂用于含Cu2+ 5.8 mg/L的电镀废水,Cu2+去除率可达97%.通过红外光谱表征该生物吸附剂的结构,说明羧基和羟基与金属离子的结合引起该生物吸附剂对Cu2+的吸附.该生物吸附剂可以再生重复使用4次以上.  相似文献   

4.
采用负载Ni_(0.5)Zn_(0.5)Fe_2O_4磁性纳米粒子芦荟壳灰从水溶液中去除Ag(Ⅰ)。采用XRD、SEM、BET等温线、振荡试样磁力计(VSM)和傅里叶变换红外光谱(FT-ⅠR)表征该吸附剂。采用该吸附剂在不同p H值(2~7)、吸附剂量(0.01~0.5 g)、Ag~+浓度(50,100,200,300,500,700和1000 mg/L)下测定Ag(Ⅰ)的吸光度。在最佳条件(30 min,p H=5)下,得到最高的Ag~+去除率。在50 m L 100 mg/L Ag~+溶液中,最佳吸附剂量是0.20 g,去除率为98.3%。基于Langmuir等温线,得到最大单层饱和吸附量为243.90 mg/g。表征结果表明,吸附剂的比表面积和孔体积分别为814.23 m2/g和0.726 cm3/g。实验数据与Langmuir和Freundlich等温线模型吻合。合成的吸附剂对水溶液中Ag(Ⅰ)吸附具有理想的表面积和吸附容量。  相似文献   

5.
软锰矿的主要成分为MuO2,其可作为一种低成本的吸附剂使用,研究其对废水中铜离子的吸附分离作用。研究Cu(II)离子的初始浓度、溶液初始pH值、吸附剂用量和粒度对吸附过程的影响。结果表明:随着吸附剂的用量增加,吸附铜的比例增大。在不同铜浓度下,溶液的初始pH值为自然状态时的吸附量最大。当初始溶液浓度、初始p H值、接触时间、搅拌速度、粒径大小和吸附剂用量分别为0.0025 mol/L、自然状态、180 min、200 r/min和6 g/L时,软锰矿对铜的吸附率为96.5%。对吸附过程中的等温吸附曲线和动力学进行研究。结果表明:该平衡吸附数据符合Langmuir等温模型,而过程的动力学符合伪二阶动力学模型。  相似文献   

6.
以TiO_2和LiOH·H_2O为原料,经水热反应、煅烧后得到纳米级别锂吸附剂前驱体Li_2TiO_3。用盐酸将Li~+洗脱后得到纳米级别锂吸附剂H_2TiO_3。通过XRD、SEM、动力学测试等手段考察煅烧温度、煅烧时间对吸附剂的结构和洗脱吸附性能的影响,用拟一级和拟二级动力学方程对吸附过程进行拟合,并用Langmuir和Freundlich等温线方程拟合吸附平衡数据。结果表明:在773K下煅烧2h制备的吸附剂对锂离子吸附容量最高达到36.16mg/g,并且具有极快的洗脱和吸附速率;洗脱5h时,锂洗脱率为98.8%,吸附速率常数达到0.0339g/(mg·h);吸附动力学符合拟二级动力学方程,吸附平衡数据符合Freundlich方程,锂离子对镁离子的分离因子达到154.17。  相似文献   

7.
为提取铜阳极泥强碱性浸出液中的六价硒,通过三种共沉淀方法得到分子式为Ca_2Al(OH)_6Cl·2H_2O的Ca-Al-Cl层状双氢氧化物(Ca-Al-Cl-LDHs)。综合FESEM、XRD、FTIR、BET和XPS分析发现,所得Ca-Al-Cl层状双氢氧化物具有片状形态、六方晶体结构以及典型矿物相和官能团。其中,正向进料方式得到的样品具有最佳的硒吸附能力。因素实验表明:低温、低氢氧化钠浓度和高吸附剂用量有利于六价硒的吸附。通过对吸附所得数据进行热力学及动力学拟合,发现吸附过程符合Langmuir吸附模型及准二级动力学模型。在50℃时,Ca-Al-Cl-LDHs对六价硒的最大吸附量达到188.6 mg/g。  相似文献   

8.
改性柿子生物吸附剂对铜和铅的吸附性能   总被引:7,自引:0,他引:7  
以柿子粉为原料,分别采用硫酸和硝酸进行化学改性制备两种柿子生物吸附剂SPP和HPP,研究它们对Cu2+和Pb2+的吸附性能,考察溶液pH值、固液比、温度、吸附时间以及金属离子浓度及对吸附性能的影响。结果表明:SPP和HPP的吸附过程可以很好地用准二级动力学方程描述,吸附等温线用Langmuir方程拟合的效果优于Freundlich方程的;SPP对Cu2+和Pb2+的最大吸附容量分别为61.47 mg/g和207.90 mg/g,HPP对Cu2+和Pb2+的最大吸附容量分别为64.0 mg/g和220.8 mg/g,吸附过程为化学吸附所控制。  相似文献   

9.
采用共沉淀法制备新型的含Al、Ca复合除氟剂。结果表明:在含100 g/L Zn~(2+)、160 g/L H2SO4和450 mg/L F-的硫酸锌电解液中复合除氟剂除氟的最优条件为:p H=3,t=90 min,w=4 g/L,θ=25℃。此时,F-浓度可降低至20 mg/L以下,除氟率可达96%,除氟剂吸附容量达108 mg/g。结果表明:仅当Cl-浓度大于800 mg/L时,复合除氟剂的除氟率降至93%。SO4~(2-)和Zn~(2+)的浓度对复合除氟剂的除氟效果没有影响,除氟率一直保持在96%左右,除氟过程锌损失率小于5%。吸附平衡曲线结果表明:该型复合除氟剂的吸附过程符合Langmuir单层吸附模型,最大理论吸附容量143.3 mg/g。  相似文献   

10.
研究了壳聚糖固定化枯草芽孢杆菌吸附铜离子的性能,分析了pH、吸附剂投加量、温度、铜离子初始浓度和时间对铜离子吸附的影响。结果表明,pH对铜离子的吸附有较大的影响。此外,固定化枯草芽孢杆菌吸附剂比空白吸附剂具有更强的吸附性能。整个吸附过程符合朗缪尔吸附模型(R2=0.994),最大吸附量为100.70mg/L。动力学模型拟合结果表明,实验符合准二级动力学模型,线性相关指数大于0.999。吸附剂能在0.1mol/LNaOH溶液中被成功解吸。  相似文献   

11.
采用低成本的本地可得的天然锰矿作为吸附剂,研究吸附工艺从水溶液中脱除铅离子和镉离子。利用伪一级、伪二级动力学和颗粒内扩散模型检验动力学吸附数据,计算和比较这些动力学模型的吸附速率常数,发现用伪二级动力学模型能最佳地描述吸附动力学。将 Langmuir 和 Freundlich 等温吸附模型用来拟合不同温度下的平衡数据,发现实验数据与 Langmuir 模型拟合得更好。采用 Langmuir 等温吸附模型计算出锰矿吸附铅离子和镉离子的最大容量分别为 98 和 6.8 mg/g。计算了热力学参数,如吸附吉布斯自由能的变化、焓变与熵变。结果表明,锰矿作为吸附剂对铅和镉的吸附反应是自发的吸热反应。因此,锰矿作为一种天然的矿物吸附剂,可以替代现有的吸附剂来脱除水溶液中的铅离子和镉离子。  相似文献   

12.
以槟榔渣(Waste areca,WA)为原料在氩气气氛中于450℃碳化45 min制备槟榔渣烧结碳(ACWA),采用X射线衍射、扫描电镜、碘吸附值测定、比表面测定等对其性能进行表征。结果表明,制备的烧结碳为多孔的碳材料,平均孔径为4.25 nm,比表面积和碘吸附值分别达到742.53 g/m~2和1241.82 mg/g。以ACWA为吸附剂,对废水中Mn(Ⅱ)的吸附进行研究,考察ACWA用量、溶液pH值和共存离子(Na~+、NH_4~+、Mg~(2+)、Ca~(2+)和Al~(3+))等因素对吸附效果的影响,并对吸附等温线和吸附动力学进行研究。结果表明:ACWA对Mn(Ⅱ)具有良好的吸附作用,对浓度为180 mg/L的Mn(Ⅱ)废水在60 min内可实现最大吸附容量34.28 mg/g,Mn(Ⅱ)吸附率高达95.2%。热力学和动力学研究表明,ACWA对Mn(Ⅱ)可用Langmuir吸附等温方程来描述,而吸附动力学符合准二级动力学模型。机理研究表明,由于表面具有丰富的负电性官能团,ACWA主要通过化学络合和静电吸附作用而实现对废水中Mn(Ⅱ)的高效去除。  相似文献   

13.
采用双滴共沉淀法制备MgO-LDH水滑石去除溶液中氟,并采用静态实验系统地讨论溶液初始p H值、氟初始浓度和吸附时间等因素对MgO-LDH吸附性能影响。结果表明:吸附条件对氟的吸附能力影响较大,适宜的MgO-LDH投加量为10 g/L,溶液初始p H为6.40;随着温度的升高,MgO-LDH的吸附量也随之增加。在较佳的实验条件下,MgO-LDH对氟的最大吸附量为16.60 mg/g。动力学数据分析显示,准二级动力学方程(R~2=0.9314~0.9907)比准一级动力学方程(R~2=0.7941~0.9919)能更好地描述吸附动力学特征。颗粒内扩散方程拟合结果发现,氟在MgO-LDH吸附过程包括表面吸附和颗粒内扩散两个过程。吸附等温数据拟合发现,Langmuir吸附等温式(R2=0.9982~0.9992)比Freundlich吸附等温式(R2=0.6904~0.9453)更好地描述氟在MgO-LDH上的等温吸附行为。  相似文献   

14.
以黄芪废渣为原料,用KOH为活化剂制备黄芪废渣活性炭,并用KMnO_4改性,改性前后的黄芪废渣活性炭用于对水溶液中Cd~(2+)的吸附。采用扫描电子显微术、比表面积测定、X射线衍射、红外光谱和贝母滴定等方法对改性前后的黄芪废渣活性炭进行表征;通过静态吸附实验考察改性前后黄芪废渣活性炭对水溶液中Cd~(2+)的吸附性能。结果表明,KMnO_4改性后活性炭表面含氧官能团增加,MnO_2沉积到活性炭表面。改性前后的黄芪废渣活性炭对Cd~(2+)的吸附符合准二级动力学方程,等温吸附更符合Langmuir模型,改性前后的黄芪废渣活性炭对Cd~(2+)的饱和吸附量分别是116.96和217.00mg/g。KMnO_4显著改变了黄芪废渣活性炭的物理化学性质和表面结构,改性后的黄芪废渣活性炭对Cd~(2+)的吸附能力明显提高。  相似文献   

15.
采用气液硫化法对模拟含锌污酸废水进行处理,考察pH值、H2S气体分压、反应温度、反应时间、Zn~(2+)初始浓度等条件对Zn~(2+)去除效果的影响。在单因素实验的基础上进行五因素五水平的正交实验,并对采用该工艺处理冶炼烟气洗涤污酸废水效果进行验证。研究Zn~(2+)硫化分离的热力学,及其气液反应动力学过程,并对锌沉渣进行分析与表征。结果表明:在最佳工艺条件为模拟溶液初始pH值3、反应时间80 min、温度35℃、H2S气体的体积分数为30%、Zn~(2+)初始浓度100 mg/L时,Zn~(2+)脱除率为99.54%,沉渣主要物相为ZnS,锌的质量分数达63.84%;实际污酸废水锌浓度为569和216.7 mg/L时,去除率分别达到99.79%和99.49%。  相似文献   

16.
在实验室条件下研究水生植物黑藻和狐尾藻对水体中重金属Pb~(2+)、Cd~(2+)、Cr~(6+)和V~(5+)的削减效果以及不同浓度重金属对植物生理的影响。结果表明:狐尾藻和黑藻对Pb~(2+)均具有较好的削减效果,当Pb~(2+)浓度为15 mg/L时,二者的削减率分别达到98.38%、94.35%;黑藻对水体中Cd~(2+)(5 mg/L)和Cr~(6+)(0.2 mg/L)的削减率分别为96.53%和69.23%,远高于相同重金属浓度下狐尾藻对Cd~(2+)的削减率(70.23%)以及对Cr~(6+)的削减率(26.73%);但狐尾藻和黑藻对水体中V~(5+)的削减率均不高,当水体中V~(5+)浓度为2 mg/L时,二者的削减率分别为16.71%和19.23%。叶绿素a、相对细胞电导率测试结果表明:随着金属浓度的升高、培养时间的延长,叶绿素a含量呈下降趋势,相对细胞电导率增大;V~(5+)对黑藻、狐尾藻的胁迫程度较小,其次为Cd~(2+)和Cr~(6+),且黑藻的受胁迫程度大于狐尾藻的,而Pb~(2+)对两种藻类的胁迫程度相对较大。总之,黑藻和狐尾藻对水体中重金属Pb~(2+)、Cd~(2+)、Cr~(6+)和V~(5+)的污染均有一定的修复能力,且黑藻的效果优于狐尾藻的。  相似文献   

17.
为了在中国南方有色矿冶区同时实现工业钨渣的资源化利用和重金属废水的处理,以钨渣和硅藻土为主要原料制备一种新型陶粒,对其与溶液中重金属Cu~(2+)的吸附规律进行研究。结果表明:新制备的近球形陶粒表面粗糙多孔,内部有许多贯穿性孔道与外部相连通;陶粒的主要物相组成含有MnFe_2O_4。在303 K、铜离子初始浓度100 mg/L、陶粒投加量0.5 g和300 min条件下,陶粒对Cu~(2+)的吸附量为9.421 mg/g,吸附去除率达94.21%。随着陶粒投加量的增大,其对溶液中Cu~(2+)的总吸附量增大,单位吸附量降低;陶粒对Cu~(2+)的吸附量随试验pH值的增大而增大。陶粒对Cu~(2+)的等温吸附更符合Freundlich模型,吸附主要发生在非均质表面,为优惠吸附;陶粒对铜离子的吸附动力学符合准二级动力学方程,吸附过程主要受液膜扩散、表面吸附以及颗粒内扩散因素控制。对于实际重金属废水的处理,陶粒对重金属离子的吸附初始阶段受扩散控制,此时,可通过加强搅拌的方式提高Cu~(2+)的去除率。  相似文献   

18.
紫外诱变菌株去除废电解液中Cu2+的实验研究   总被引:1,自引:0,他引:1  
陈林  黄绍勇 《铸造技术》2003,24(6):553-555
以L -5的诱变菌株作为生物吸附剂 ,展开吸附Cu2 + 的实验研究。结果表明 :L -5最佳诱变时间为 5min ,到达稳定期的时间要比未诱变菌株缩短 10h左右 ,诱变后菌株L -5在 3 0℃、pH =4、摇床转速为 160r/min的条件下 ,对 [Cu2 + ] =1g/L进行吸附 ,最大吸附率达到 97.4% ,比未诱变菌株提高 11.3 % ;诱变菌株L -5对实际废电解液中Cu2 + 吸附率达到 98.5 % ,出水中Cu2 + <0 .5mg/L ,可达标排放。  相似文献   

19.
研究以改性海泡石作为吸附剂从酸性溶液中回收Pd(Ⅱ)的吸附特性和机理;通过等温模型、动力学和热力学模型分析改性海泡石对Pd(Ⅱ)的吸附特性;利用SEM-EDS、TEM和XPS技术研究改性海泡石对Pd(Ⅱ)的吸附机理。Langmuir模型表明,当温度为30°C时,改性海泡石对Pd(Ⅱ)的最大吸附量为322.58 mg/g。动力学实验结果表明,准二级动力学模型能较好地模拟改性海泡石对Pd(Ⅱ)的吸附过程,化学吸附为改性海泡石吸附Pd(Ⅱ)的控速步骤。当Pd(Ⅱ)的初始浓度为100 mg/L时,1 g/L改性海泡石可吸附99%的Pd(Ⅱ)。吸附-脱附循环实验结果表明,改性海泡石具有良好的稳定性和重复使用性。本研究结果表明,改性海泡石是一种可高效且经济的Pd(Ⅱ)回收材料。  相似文献   

20.
为了明确La(Ⅲ)改性沸石脱除模拟硫酸锌溶液中氟离子的机理,利用XRD、SEM和EDX对吸附剂进行表征,研究吸附剂用量和吸附时间对吸附过程的影响,采用吸附等温线与吸附动力学对吸附过程进行探究。结果表明,Langmuir吸附等温线模型更适合吸附过程;在303和313 K条件下,吸附剂的最大理论吸附容量分别为20.83和23.04 mg/g;Temkin和D-R吸附等温线模型证明氟离子脱除过程为物理吸附,且吸附过程遵从准二级动力学模型;同时,热力学计算结果(?G~Θ0 k J/mol,?H~Θ=8.28 k J/mol,?S~Θ=0.030 k J/(mol?K))说明La(Ⅲ)改性沸石脱除模拟硫酸锌溶液中氟离子是自发、吸热的物理过程;将La(Ⅲ)改性沸石应用在工业硫酸锌溶液中,用量为15 g/L时,氟离子浓度从98.05 mg/L降低至44.09 mg/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号