首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
The goal of this paper is to describe a linearizing feedback adaptive control structure which leads to a high quality regulation of the output error in the presence of uncertainties and external disturbances. The controller consists of three elements: a nominal input–output linearizing compensator, a state observer and an uncertainty estimator, which provides the adaptive part of the control structure. In this way, the feedback controller, based on the disturbance observer, compensates for external disturbances and plant uncertainties. The effectiveness of the controller is demonstrated on a distillation column via numerical simulations. ©  相似文献   

2.
The aim of this paper is to develop a type-1 and a type-2 fuzzy logic PID controller (type-1 FLC and type-2 FLC, respectively) for the control of a binary distillation column, the mathematical model of which is characterized by both high nonlinearities and parameter uncertainties. Attention was focused on the tuning procedure proposed by the authors and representing a development of the original Jantzen [1] method for type-1 and type-2 fuzzy controllers, in particular including input type-2 Gaussian membership functions. A theoretical explanation of the differences in fuzzy controller performance was in fact provided in the light of simulation results. The performance of a type-1 FLC was then compared in simulation with the one of type-2 FLC. All the simulation results confirmed the robustness and the effective control action of each fuzzy controller, with evident advantages for the type-2 FLC.  相似文献   

3.
A direct synthesis tuning method is proposed for the PI controller settings of unstable first-order-plus-time-delay processes. Unlike hitherto-known PI setting rules which often result in overshoots in time response or require the modification of the feedback control structure, this method ensures the overdamped response as desired while retaining the conventional PI control structure. This enhanced performance is possible by introducing a first-order set-point filter and applying simple rules for setting the values of the controller parameters without having any tuning parameters. The comparison with both conventional PI controllers and two-stage IMC method reveals that the proposed method produces not only smooth overdamped closed-loop response for set-point changes, but also fast regulatory control response for load changes. These responses are also shown to be quite robust against the uncertainties of the parameters as well as against the noise in the signal. The stability conditions for the processes having a large time delay or different ratios of time delay/time constant have been investigated as well. ©  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号