首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
为了提高熔融沉积成型工艺打印件的力学性能以及减少打印时间成本,利用3ds Max三维建模软件,设计出打印力学试件的三维模型,结合单因素和正交试验分析,研究了填充角度、打印速度、打印温度、填充密度以及分层厚度对聚乳酸(PLA)试件拉伸强度的影响,并对试件拉伸强度进行测试。结果表明,各参数对3D打印PLA试件的影响大小为:填充密度分层厚度填充角度打印温度打印速度,且当打印分层厚度为0.3 mm,打印速度为80 mm/s,打印温度为210℃,填充密度为40%,填充角度为45°,试件具有最优的拉伸强度。  相似文献   

2.
采用五因素四水平正交试验设计,对16组不同工艺参数(打印层厚、填充密度、打印温度、填充速度、外壳厚度)的FDM 3D打印聚乳酸(PLA)制件力学性能进行了测试和结果分析,确定了影响PLA制件力学性能的主要因素,其中,外壳厚度对制件力学性能影响最为明显,打印温度影响最小,同时分析得到了在打印层厚0.15 mm,填充密度40%,打印温度210℃,填充速度60 mm/s,外壳厚度1.6 mm条件下可获得力学性能最佳的制件。最后对试验数据进行回归分析,拟合得到了FDM打印工艺参数与PLA制件力学性能指标的数学模型;通过对不同打印工艺参数的试样进行试验验证,表明该模型拟合误差小(5%以内),可靠性高,可用来对FDM 3D打印制件的加工提供参考。  相似文献   

3.
为了缩短熔融沉积成型(FDM)工艺的成型时间并改善产品的力学性能,采用FDM工艺方法对聚对苯二甲酸乙二醇-1,4-环己二甲醇酯(PETG)和丙烯腈-丁二烯-苯乙烯(ABS)两种线材进行3D打印,以成型时间、拉伸强度和拉伸弹性模量为优化指标,设计了基于正交试验法的三因素(打印速度、分层厚度、填充率)四水平的工艺参数优化方案。结果表明:PETG/ABS复合制件最优力学性能的参数组合是A4B1C3,即打印速度为30 mm/s、分层厚度为0.1 mm、填充率为75%。验证试验表明,拉伸强度为44.73 MPa、弹性模量为758.12 MPa、成型时间为113 min,优化参数后明显改善了力学性能,对双材料打印制品的生产具有一定的指导意义。  相似文献   

4.
提出了一种基于熔融沉积成型(FDM)的金属3D打印技术,使用FDM打印机打印金属/高分子复合材料,得到的打印坯通过后处理脱脂和烧结成为金属零件。使用正交试验方法研究了分层厚度、喷嘴温度、填充线宽、成型方向对打印坯尺寸精度的影响,使用扫描电子显微镜(SEM)观察了不同分层厚度的打印坯的内部结构。实验结果表明:打印坯的尺寸精度随着喷嘴温度和填充线宽的增大而提高,但成型方向对尺寸精度的影响并不明显;分层厚度是影响打印坯成型质量的主要因素,分层厚度越小,打印坯内部层间间隙越小,成型质量越高。  相似文献   

5.
采用商用聚乳酸(PLA)线材作为熔融沉积成型(FDM)打印材料,以拉伸强度和冲击强度为优化指标,设计正交试验,从分层厚度、打印速度、喷嘴温度、填充角度等元素探究成型工艺参数对FDM打印制件力学性能的影响。利用极差分析法,考察了各工艺参数对制件力学性能的影响情况,通过综合评分法和综合平衡法,获得了最优成型工艺参数组合并验证试验结果正确性。结果表明,分层厚度为0.3 mm,打印速度为90 mm/s,喷嘴温度为220 ℃,填充角度为45 °/45 °时,FDM制件的力学性能最优。  相似文献   

6.
在大型零件的成形过程中,零件底部翘曲变形导致精度丧失是熔融沉积增材制造技术的一个突出问题。以熔融沉积成型(FDM)3D打印制件的底部翘曲变形为研究对象,建立了一种FDM翘曲变形的数学模型,通过标准正交试验设计研究喷嘴温度、分层厚度、托板温度、填充密度和堆积层数及断面长度对FDM 3D打印翘曲变形的影响,应用极差分析和方差分析得到了最优的工艺参数组合。研究结果表明,分层高度为0.2 mm,喷嘴温度为210℃,托板温度为55℃,填充率为40%,底层堆积层数为25层,断面长度为20 mm,此时翘曲变形量最小,为0.402 mm。对翘曲变形影响程度主次顺序为:分层厚度>堆积层数>喷嘴温度>断面长度>填充密度>托板温度。随着堆积层数的增加和断面长度的减小,翘曲变形量呈减小趋势。  相似文献   

7.
倪志兵  余旺旺  陈泳 《塑料》2023,(6):54-59
采用熔融沉积法(FDM)3D打印工艺制作木粉(WF)与聚乳酸(PLA)质量比为3:100的WF/PLA复合材料,研究了打印工艺参数对WF/PLA复合材料力学性能的影响,确定了最佳打印工艺条件,然后,在最佳条件下,打印WF与PLA质量比为11:100的WF/PLA复合材料,并且,将该材料的性能与FDM 3D打印PLA试样进行了对比。结果表明,当打印层厚度为0.1 mm、打印温度为220℃、打印速度为50 mm/s、填充密度为100%、沉积角度为0时,WF/PLA复合材料的力学性能最佳。在该工艺条件下,WF与PLA质量比为11:100的WF/PLA复合材料的拉伸强度、拉伸模量、弯曲强度、弯曲模量和冲击强度分别为纯PLA的89.61%、97.56%、82.86%、92.40%和95.04%,与纯PLA相比,复合材料的表面润湿性能较好,吸水率显著增大。  相似文献   

8.
通过挤出成型制备聚乳酸线材,采用熔融沉积方法制备标准样条,研究层积角度、打印层厚度和填充密度对打印产品的拉伸强度、弯曲强度、冲击强度和表面形貌等性能的影响。研究结果表明:产品打印时的沉积角度为0°打印的产品,其力学性能比沉积角度为45°的低;打印层厚度为0.2 mm产品的力学性能略高于层厚为0.1 mm的产品;打印产品的弯曲强度和冲击强度随着填充密度的增加而增加。  相似文献   

9.
为了提高聚乳酸(PLA)复合材料3D打印制件的性能,采用三因素三水平正交试验设计,研究了用熔融沉积成型(FDM)工艺3D打印PLA/石墨烯复合材料制件过程中,打印层高、填充密度以及构建取向对制件弯曲性能的影响。结果表明,石墨烯对PLA/石墨烯复合材料制件有较好增强效果,各试验参数对3D打印PLA/石墨烯复合材料制件弯曲强度的影响大小顺序为:构建取向>填充密度>层高,且当构建取向为侧立方式,填充密度为80%,层高为0.2 mm时,制件具有最佳的弯曲强度;对复合材料制件弯曲弹性模量的影响大小依次为:填充密度>层高>构建取向,且当构建取向为侧立,填充密度为80%,层高为0.1 mm时,制件具有最佳的弯曲弹性模量。  相似文献   

10.
王琛  周徵艺  张晨赟 《塑料工业》2023,(3):139-144+128
为提高熔融沉积3D打印制件的拉伸性能,通过熔融沉积3D打印工艺制作哑铃型试样,探究填充结构对3D打印制件拉伸性能的影响。结果表明,根据平面线型及空间特征,熔融沉积3D打印制件的填充结构分为三类:平行线型填充、立体单元型填充和网格线型填充;其中,平行线型填充结构中与拉伸方向一致的填充线条(丝材本体)数量影响了3D打印制件的拉伸性能,填充线条数量越多,制件的强度和刚度越大;立体单元型填充结构中的立体单元数量影响了3D打印制件的拉伸性能,立体单元的数量越多,制件的强度和刚度越大;网格线型填充结构中的网格密度影响了3D打印制件的拉伸性能,网格密度越大,制件的强度和刚度越大;相同工艺参数条件下,平行线型填充结构的比强度和比刚度最大,拉伸性能最强,立体单元型填充结构的拉伸性能次之,网格线型填充结构的拉伸性能最弱。  相似文献   

11.
通过粉体喂料三维(3D)打印机研究了纯聚乳酸(PLA)材料在3D打印过程中打印温度以及填充密度对成型制品的影响;然后在PLA中加入不同比例的金属粉末并制备出混合物料颗粒,通过粉体喂料3D打印机打印成型试样制品,并进行力学性能测试。结果表明,金属粉末含量的增加会导致复合材料拉伸强度的降低;此外,金属粉末含量增加,复合材料的热导率会随之升高,而膨胀系数降低。  相似文献   

12.
《广州化工》2021,49(16)
使用3D打印机制备不同参数的聚乙烯醇(PVA)模板,结合牺牲模板技术制备聚己内酯(PCL)支架,研究模板参数孔隙率和压缩强度的影响。结果表明:支架具有超过95%的孔隙率,堆叠角度、打印层厚对支架的孔隙率影响不大,但是随填充密度的增加,孔隙率略有降低。力学性能方面,随着填充密度的升高、打印层厚的降低,支架的压缩强度提高;相同填充密度、打印层厚下,0°/90°堆叠有最高的力学强度,0°/45°/90°/135°次之,0°/60°/120°强度最差。  相似文献   

13.
为了解决熔融沉积3D打印成型过程中经常遇见的翘曲变形问题,对聚乳酸成型件翘曲变形的主要因素喷嘴温度、填充速度和分层厚度进行了研究,制定了正交试验方案,并分析了三因素对翘曲变形量的综合影响程度,结果得到最优的工艺参数组合为:喷嘴温度为215℃,填充速度为60 mm/s,分层厚度为0.2 mm,综合影响的显著程度由高到低依次为填充速度、分层厚度、喷嘴温度。  相似文献   

14.
以拉伸、压缩、弯曲、扭转4种受载情况下的熔融沉积型三维(FDM 3D)打印预制件为研究对象,以填充率、填充单元结构类型为分析参数,通过确定3D打印预制件填充率的影响因素,建立了填充率与格子形填充单元几何参数的通用解析式,据此构建不同填充率下3D打印预制件的三维几何模型;然后对不同受载类型3D打印预制件进行有限元仿真分析,明确填充率对不同载荷工况下3D打印预制件力学特性的影响规律。仿真和实验结果表明,填充率对3D打印预制件所受拉伸应力、压缩应力、弯曲应力均有较大影响,而扭转情况下影响较小,据此进一步确定了一定受载情况下3D打印预制件的较优填充率;基于本文提出的不同填充率下预制件三维模型建立方法,可有效实现对预制件的力学性能仿真分析,对减少产品试验验证次数、降低研发成本具有积极作用。  相似文献   

15.
采用3D打印方式制备了聚乳酸(PLA)样品,通过对打印速度、打印温度、填充密度、层厚的调节,研究了打印工艺对PLA产品力学性能的影响。结果表明,填充密度和层厚的增加会使打印所用材料变多;打印速度的增加会引起拉伸强度、冲击强度、断裂伸长率、拉伸模量的降低;打印温度的升高会使拉伸强度和拉伸模量增大,冲击强度减小,断裂伸长率先增后减;填充密度的增加会使拉伸强度和冲击强度增大,但是断裂伸长率和拉伸模量先升后降;打印层厚的增加会引起拉伸强度、冲击强度、断裂伸长率、拉伸模量的增加。  相似文献   

16.
针对连续纤维增强聚醚醚酮(PEEK)复合材料增材制造中的界面结合差、制件精度不高等技术瓶颈,基于多热力场耦合作用下的连续纤维增材制造成型工艺,实现了典型样件的3D打印制备.基于正交实验设计,并通过微观形貌表征和力学性能测试,探究了喷头温度、打印速度和分层厚度对打印制件的表面粗糙度和弯曲性能的影响规律,获得连续纤维增强P...  相似文献   

17.
为实现临时装配式混凝土路面板的可循环利用,本文将活性粉末混凝土(RPC)与3D打印成型相结合,探索可循环临时装配式混凝土路面板适宜材料与工艺.开展填充模式和钢纤维掺量对试件力学性能的影响研究,通过有限元分析模拟,明确了可循环混凝土路面板的应用效果.结果 表明,采用交错填充时,Y、Z方向抗压强度高于平行填充模式,X方向略低于平行模式,抗弯拉强度介于平行填充模式下X方向和Y方向之间.随着钢纤维掺量的增加,抗压强度先增加后降低,抗弯拉强度逐渐增加.有限元计算分析表明,采用RPC材料与3D打印相结合的方式,可提高路面板疲劳寿命与循环利用次数.相比24 cm厚C40混凝土路面板,厚度为14 cm和18 cm的3D打印RPC路面板疲劳寿命系数可达41.69倍和1 445.49倍,同时,可减小路面板自重达42%和24%,便于循环施工.  相似文献   

18.
研究了三维(3D)打印关键工艺参数(填充密度、打印层高、打印壁厚和打印温度)对聚乳酸(PLA)试样拉伸强度和断裂伸长率的影响。结果表明,随填充密度的增大,试样的拉伸强度及断裂伸长率均呈增大趋势,但当填充密度为100%时,试件结构由空间网状结构转变为实体结构,造成断裂伸长率下降;随着打印层高的增加,试样拉伸强度降低,但断裂伸长率增加;随打印壁厚的增加,试样的拉伸强度以及断裂伸长率均呈现增加的趋势,但当打印壁厚为1.6mm时,试件断面以实体结构为主,造成断裂伸长率下降;PLA材质打印材料在210~220℃范围内获得的试件拉伸性能最好。  相似文献   

19.
为进一步探究熔融沉积成型(FDM) 3D打印参数和制件弯曲性能之间的关系,创建合理的FDM 3D打印制件弯曲强度预测模型。根据正交试验L16 (45)的设计原则和神经网络算法模型的构建要求,按照不同分层高度、填充密度、打印温度、打印速度以及外壳厚度五种因素,制备25组试验试样,并进行弯曲性能检测。随后通过建立GA-BP神经网络模型、传统BP神经网络模型以及多元回归方程模型,分别对FDM 3D打印制件弯曲性能进行预测,并将预测数据与试验测试数据进行对比。通过对比发现,GA-BP神经网络模型预测数据与试验测试数据更为接近,其平均误差为3.71%,且误差值整体波动最小,BP神经网络模型与多元回归方程模型预测精度相差不大,BP神经网络模型预测平均误差为8.05%,多元回归方程模型预测平均误差为9.07%,但多元回归方程误差值整体波动最大。因此,采用GA遗传算法优化后的BP神经网络模型在进行FDM 3D打印制件弯曲性能预测方面具有更高的精度和更良好的稳定性。  相似文献   

20.
为了确定PLA构件打印结构对力学性能的影响,以填充密度和打印放置方位为分析参数,三角形网格为填充图案,设计不同的填充结构进行压缩试验。结果表明,填充密度和打印放置方位对于力学性能产生关联影响。随着填充密度的减小,试样的压缩极限强度减小,试样的破坏形式从以塑性变形为主转变为以局部失稳为主。对于不同的打印放置方位,压缩极限强度对填充率的变化敏感度不同,竖直放置时,填充率变化对性能的影响最大,倾斜45°放置时,填充率变化对性能的影响最小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号