首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用混捏法制备了不同Ti含量的ZnO-TiO2载体,采用等体积浸渍法制备了NiO/ZnO-TiO2汽油脱硫吸附剂前驱体,并采用X射线衍射(XRD)、压汞、NH3程序升温脱附(NH3-TPD)、H2程序升温还原(H2-TPR)和H2程序升温脱附(H2-TPD)等手段对其进行了表征。以催化裂化轻汽油为原料,于氢气氛围下对NiO/ZnO-TiO2前驱体还原得到Ni/ZnO-TiO2吸附剂,在固定床上考察了Ti掺杂对该吸附剂脱硫性能的影响。结果表明:Ti的掺杂提高了Ni/ZnO吸附剂中活性组分Ni的分散度,增加了Ni活性位点,增强了吸附剂中强酸酸性及酸强度,Ti掺杂的吸附剂脱硫性能显著提高;Ti的掺杂能够减少游离Ni,有效抑制烯烃饱和;吸附剂脱硫性能随着Ti掺杂量的增加呈现先增强后减弱的趋势,当Ti掺杂质量分数为5%时,吸附剂具有最优脱硫性能,能够将FCC轻汽油中硫质量分数由300 μg/g降低至5 μg/g以下,穿透硫容为6.711%(每克吸附剂吸附硫67.11 mg),烯烃质量分数增加0.6百分点,降低了汽油辛烷值损失。  相似文献   

2.
OCT-M催化裂化汽油选择性加氢脱硫技术   总被引:40,自引:8,他引:32  
介绍了抚顺石油化工研究院开发的OCT-M催化裂化汽油选择性加氢脱硫技术及其在中国石油化工股份有限公司广州分公司0.20ML/a重油催化裂化汽油加氢装置进行首次工业应用试验的情况。该技术将催化裂化汽油切割为轻、重馏分,采用专门的催化剂对重馏分进行选择性加氢脱硫,脱硫后再与轻馏分词合,脱硫率高,汽油烯烃含量降低不大、抗爆指数损失小。工业应用初期标定结果表明:硫质量分数为400-600μg/g、烯烃体积分数为29.6%、研究法辛烷值92.4、马达法辛烷值81.0的重油催化裂化汽油经过该技术处理后,产物汽油硫质量分数为73~89μg/g、烯烃体积分数约21.8%,研究法辛烷值约90.5,马达法辛烷值约80.3,混合汽油质量收率为99.4%,达到了攻关指标。  相似文献   

3.
Ni/ZnO吸附剂脱除催化裂化汽油中的硫   总被引:4,自引:1,他引:3  
 采用等体积浸渍法制备了Ni质量分数为4%的Ni/ZnO吸附剂,以FCC汽油为原料,通过固定床吸附实验评价了Ni/ZnO吸附剂对催化裂化汽油的吸附脱硫性能以及吸附剂的再生性能。结果表明,较高的反应温度、压力和较低的体积空速有利于提高Ni/ZnO对FCC汽油的吸附脱硫效果,并且汽油辛烷值损失小。Ni/ZnO吸附剂脱硫的适宜操作条件为: 温度370~380℃,吸附压力2.0MPa,氢/油摩尔比1.5,体积空速4.0h-1,此时吸附剂的穿透硫容 (硫质量分数达到30μg/g时,认为吸附剂穿透,测定吸附剂中的硫质量分数,即为吸附剂的穿透硫容。)为2.54%,汽油辛烷值损失1.1个单位。该吸附剂可以再生,多次循环使用后其脱硫性能基本保持不变。  相似文献   

4.
制备了CoMo/La_2O_3-Al_2O_3选择性加氢脱硫催化剂,通过BET,XRD,H2-TPR,XPS,TEM对催化剂进行了表征,并在固定床连续微型反应装置上考察了La_2O_3含量对催化剂活性的影响。结果表明:La的引入可以改善活性组分与载体间的相互作用,有利于金属活性组分的还原,提高了Mo的硫化程度,增加了CoMoS活性相的数量;当La_2O_3质量分数为1.0%时,催化剂有最佳的选择性加氢脱硫活性,在处理FCC汽油重馏分(65℃馏分)时可将其硫质量分数降至11.2μg/g,RON损失1.1个单位;与碱洗轻馏分调合后,产品硫质量分数为9.0μg/g,RON损失0.8个单位。  相似文献   

5.
为了研究S Zorb吸附剂中Zn_2SiO_4对汽油辛烷值及吸附剂脱硫能力的影响,从S Zorb装置上采集了3个具有不同Zn_2SiO_4质量分数的吸附剂,以FCC汽油为原料,采用固定床评价装置进行了脱硫实验。系统研究了吸附剂的物相组成和表面Ni元素化学态的变化对汽油硫质量分数、脱硫前后辛烷值损失(ΔRON)和烃组成的影响规律。结果表明,随着吸附剂中Zn_2SiO_4物相质量分数的增加,其脱硫能力明显降低,同时吸附剂外表面n(NiS)/n(Total Ni)也随之增加。在相同的反应条件下,吸附剂外表面n(NiS)/n(Total Ni)增加会导致吸附剂对FCC汽油中烯烃的吸附能力减弱,降低了烯烃加氢饱和的机会,使得FCC汽油脱硫前后的ΔRON减小。C_4~C_6烯烃加氢饱和生成链烷烃是导致FCC汽油辛烷值损失的主要原因。  相似文献   

6.
为了研究S Zorb吸附剂中Zn2SiO4对汽油辛烷值及吸附剂脱硫能力的影响,从S Zorb装置上采集了3个具有不同Zn2SiO4质量分数的吸附剂,以FCC汽油为原料,采用固定床评价装置进行了脱硫实验。系统研究了吸附剂的物相组成和表面Ni元素化学态的变化对汽油硫质量分数、脱硫前后辛烷值损失(ΔRON)和烃组成的影响规律。结果表明,随着吸附剂中Zn2SiO4物相质量分数的增加,其脱硫能力明显降低,同时吸附剂外表面n(NiS)/n(Total Ni)也随之增加。在相同的反应条件下,吸附剂外表面n(NiS)/n(Total Ni)增加会导致吸附剂对FCC汽油中烯烃的吸附能力减弱,降低了烯烃加氢饱和的机会,使得FCC汽油脱硫前后的ΔRON减小。C4~C6烯烃加氢饱和生成链烷烃是导致FCC汽油辛烷值损失的主要原因。  相似文献   

7.
中海石油中捷石化有限公司汽油加氢脱硫装置采用法国Axens公司的Prime G~+工艺及催化剂,于2016年一次性开车成功。该装置采用典型的一段两反流程,即一段加氢脱硫(HDS)加两台反应器(脱硫反应器+产品精制反应器)流程。催化裂化(催化)汽油中硫组分主要以中轻质硫化物为主,脱硫反应极易进行,操作难点是在保证加氢汽油硫质量分数小于10μg/g的前提下,尽可能降低辛烷值损失。对选择性加氢反应器、轻汽油及重汽油切割塔、脱硫反应器、产品精制反应器及循环氢脱硫塔的操作进行分析,根据操作过程中操作参数及化验数据,进行3台反应器的反应温度、切割塔的轻汽油采出量、循环氢中硫化氢浓度等方面的操作调整,最终达到在保证加氢汽油硫质量分数小于10μg/g的同时,尽可能降低辛烷值损失的目的。  相似文献   

8.
为解决中海石油惠州炼化分公司5 Mt/a催化汽油全馏分加氢脱硫装置中出现的加氢脱硫催化剂再生后汽油辛烷值损失较大、加氢脱硫反应器入口温度过高的问题,采取了增加脱硫醇反应器和加氢脱硫催化剂HDOS-200与加氢脱硫醇催化剂HDMS-100组合工艺的措施。改造后,催化裂化汽油加氢处理后的硫含量达到10μg/g以下,汽油辛烷值损失从2.9降至1.9,加氢脱硫反应器入口温度从263℃降低至255℃,延长了装置运行周期。  相似文献   

9.
750kt/a催化汽油加氢脱硫装置的改造与运行   总被引:1,自引:0,他引:1  
为满足国Ⅴ汽油标准对车用汽油硫质量分数的要求,中国石油大港石化公司对原采用Prime-G~+技术的750 kt/a催化汽油加氢脱硫装置进行了改造。改造的主要内容:增设与原重汽油加氢脱硫工艺流程完全相同的第二段加氢脱硫部分;降低轻汽油切割比例;增设脱砷反应器;增设热分离罐。改造后对装置运行情况进行标定,除要求脱后汽油中硫质量分数按15μg/g进行标定外,其他主要参数的标定结果如氢耗为2.0 kg/t催化原料、液体收率为100%、研究法辛烷值损失1.4单位、马达法辛烷值损失为0.3单位、烯烃体积分数降低5.5百分点等均优于设计值,表明Prime-G~+工艺技术成熟可靠,采用的催化剂活性高、选择性好。  相似文献   

10.
介绍了催化裂化(FCC)汽油加氢脱硫改质组合技术(M-PHG)的工艺流程、工艺特点及其配套催化剂,对PHG技术和M-PHG技术进行了中试对比评价,并在40万t/a FCC汽油加氢装置上进行了工业标定和稳定运行。结果表明:针对高烯烃FCC汽油原料,在中试条件下,PHG技术和M-PHG技术对原料的脱硫率分别为97.3%,97.0%,烯烃体积分数分别降低9.4,16.9个百分点,研究法辛烷值(RON)分别损失2.5,1.8个单位,M-PHG技术使芳烃体积分数增加3.5个百分点;在标定操作条件下,采用M-PHG技术处理后,烯烃体积分数下降15.2个百分点,芳烃体积分数增加2.8个百分点,RON损失1.2个单位,脱硫率、液体收率分别为96.0%,99.1%;实际生产中,含硫量为419.0μg/g的FCC汽油原料经M-PHG技术处理后,轻、重汽油产品含硫量分别为10.7,12.6μg/g,均不大于15μg/g,与轻汽油醚化产品调和后辛烷值损失小于1.5个单位。  相似文献   

11.
针对催化裂化(FCC)汽油加氢脱硫和降烯烃过程中辛烷值损失的不足,采用洛阳石油化工工程公司开发的FCC汽油加氢脱硫及芳烃化工艺,以FCC汽油重馏分(80℃以上)为原料,考察反应前后烃组成及辛烷值的变化.结果表明FCC汽油重馏分加氢脱硫及芳构化前后,硫质量分数由1 570μg/g降至128μg/g,烯烃体积分数由36.7%降至15.8%,芳烃、异构烷烃和环烷烃含量增加,异构烃与正构烃比率提高,RON和MON均有不司程度的提高,达到了加氢脱硫和降烯烃的同时不损失辛烷值的目标.  相似文献   

12.
以廉价的橡胶乳液-3为介孔模板剂,通过优化晶化温度、晶化时间和凝胶中橡胶乳液-3干基与硅元素的质量比(R),以及采用蒸汽/柠檬酸组合处理,获得孔结构和酸性适宜的介孔H-ZSM-5分子筛,并对以此分子筛为载体制备的辛烷值恢复催化剂进行催化裂化汽油(催化汽油)加氢性能评价。表征结果表明:R、晶化温度和晶化时间的最佳值依次为0.26,190 ℃,48 h;蒸汽/柠檬酸组合处理在显著提高介孔H-ZSM-5分子筛介孔比例的同时可在较大范围内调控其酸性。以硫质量分数为113 μg/g、烯烃体积分数为40.9%的催化汽油为原料的加氢性能评价结果表明:与上一代工业化辛烷值恢复催化剂相比,新制备的辛烷值恢复催化剂作用下的加氢产品的烯烃体积分数降低2.2百分点,异构烷烃体积分数增加1.1百分点,芳烃体积分数增加1.1百分点,脱硫率增加11.5百分点,研究法辛烷值(RON)损失减小0.5个单位,液体收率相当。介孔H-ZSM-5分子筛具有较大平均孔径、较高强L酸酸量与B酸酸量的比值、较多弱酸量,有利于提高其对催化汽油降烯烃、保持高RON和高液体收率的能力;其较大平均孔径有利于活性金属在介孔分子筛中的分散,从而使其对催化汽油表现出较高的脱硫性能。  相似文献   

13.
通过对不同反应温度下催化裂化汽油加氢脱硫效果及运行成本的分析,认为汽油选择性加氢脱硫应维持较低的反应温度,以减少辛烷值损失,同时保持与汽油脱硫醇装置串联运行,既能确保成品汽油硫醇硫质量分数低于10ug/g,又能降低整个催化裂化汽油脱硫系统的运行成本,延长加氢催化剂使用寿命。  相似文献   

14.
以γ-Al_2O_3为载体,采用浸渍法制备出一系列Ce/Al_2O_3,La/Al_2O_3,Ce-La/Al_2O_3催化剂,利用X射线衍射(XRD),N2吸附-脱附,氢气程序升温还原(H2-TPR)等分析手段对催化剂进行了表征,并在O2存在的条件下,考察了金属Ce,La负载量、焙烧条件、水蒸气以及SO2对催化剂催化CO还原NO性能的影响。结果表明:与Ce10Al催化剂相比,负载3%(质量分数)的La后,在反应温度为500℃的条件下,Ce10La3Al催化剂可使NO转化率提高22个百分点; La能够提高Al_2O_3的热稳定性,使Ce10La3Al催化剂具有优异的抗烧结能力和水热稳定性,但SO2可致使其中毒失活。  相似文献   

15.
采用浸渍法制备了CeO_2改性的Ru/Al_2O_3、Pd/Al_2O_3加氢脱硫催化剂,分别考察了硫化态和还原态贵金属催化剂对噻吩加氢脱硫反应性能的影响,并运用XRD、TPR、TPR-S等手段对催化剂进行表征。结果表明,CeO_2的改性导致还原态Pd/Al_2O_3催化剂初始活性提高了26%,但硫化态Ru/Al_2O_3催化剂活性下降。CeO_2对Pd/Al_2O_3催化剂的改性机理在于Pd与Ce发生了强相互作用,所生成的Ce~(3+)成为了新的不同于B酸的噻吩吸附活化中心。而在Ru/Al_2O_3中,CeO_2增强了Ru-S键,导致活性中心硫空穴的减少。  相似文献   

16.
以Fe元素作为主要金属组分,γ-Al2O3为载体,制备负载不同第二金属组分的XO-Fe2O3/γ-Al2O3双金属催化剂(X为La,Ce,Co,Cu),采用XRD、SEM、氮气吸附-脱附等手段对催化剂进行表征;以H2O2为氧化剂,噻吩为模型硫化物,将含噻吩的正辛烷作为模拟汽油,研究非均相类Fenton试剂催化氧化脱硫过程,考察催化剂中金属元素种类、n(H2O2)/n(S)、催化剂用量等对氧化脱除噻吩效果的影响。结果表明:Fe2O3/γ-Al2O3具有一定的催化H2O2氧化脱硫活性,非均相类Fenton试剂可以催化H2O2产生·OH;在Fe2O3/γ-Al2O3中掺杂少量其它金属可以改变其催化活性,其中以加入Cu后的催化剂活性最高,Cu起到了催化剂助剂的作用,催化剂呈现明显的介孔性质;对于30mL噻吩质量分数为526μg/g的模拟汽油,以CuO-Fe2O3/γ-Al2O3为催化剂,在反应温度333K、催化剂加入量0.2g、n(H2O2)/n(S)=7.40、反应时间120min的条件下,噻吩脱除率达到95.3%以上,有效硫质量分数降至9.4μg/g,达到超深度脱硫效果。  相似文献   

17.
以全馏分催化裂化(FCC)汽油为原料,模拟中国石油抚顺石化公司120万t/a汽油加氢装置的工艺流程,在实验室500 m L等温床评价装置上对GARDES工艺配套催化剂的性能进行了串联评价,并基于评价结果进行了GARDES技术的工业应用。评价结果表明,在预加氢反应器温度为110℃,切割温度为60℃,选择性加氢脱硫和辛烷值恢复反应器温度分别为210,320℃的条件下,相对原料油而言,调和汽油产品硫含量由94.12μg/g降至34.82μg/g,脱硫率为63%,烯烃体积分数降低8.0个百分点,芳烃体积分数增加0.7个百分点,研究法辛烷值(RON)几乎无损失; 工业装置所生产调和汽油产品的各项性能参数均满足国Ⅳ汽油的指标要求。  相似文献   

18.
通过剖析不同的催化裂化汽油后处理工艺在处理高烯烃、高硫含量汽油时的工业装置运转数据,发现汽油烯烃和硫含量降低会造成辛烷值损失较大,生产成本急剧上升,原因在于汽油脱硫率超过97%时,烯烃饱和率急剧增加,由此带来氢耗上升,生产成本上升。为此,创建催化裂化汽油降烯烃与脱硫分步集成工艺,汽油烯烃含量降低由定向调控汽油组成的催化裂化工艺来实现,通过强化异构化和选择性氢转移反应,使汽油烯烃体积分数降低到不超过20%、硫质量分数不超过300μg/g,为后续汽油脱硫单元提供适宜的汽油原料。汽油脱硫后处理工艺控制汽油脱硫率不超过97%、烯烃饱和率不超过20%,最终辛烷值损失大幅降低,巧妙化解脱硫-烯烃饱和-辛烷值损失-低成本生产的矛盾链。工业应用结果表明,在相同的汽油脱硫率下,该工艺路线的烯烃饱和率和辛烷值损失大幅降低,实现了低成本地生产国Ⅴ和国Ⅵ车用汽油,得到大面积的应用,为汽油质量持续升级提供了强有力的支撑。  相似文献   

19.
为了满足国Ⅴ、国Ⅵ排放标准清洁汽油生产需求,开发了一种富芳烃汽油深度加氢脱硫催化剂。通过在金属浸渍液中引入一定比例的有机络合剂制备了高脱硫活性的Ni-Mo/Al_2O_3催化剂,催化剂微反评价结果表明,在反应温度245℃、反应压力2.0 MPa、体积空速1.5h~(-1)、氢油体积比300的条件下,可以将某石化公司富芳烃汽油的硫质量分数从740μg/g降至小于5.0μg/g,脱硫率达99.3%,辛烷值损失在1.0个单位以内,催化剂表现出较高的加氢脱硫活性,满足工业装置清洁汽油生产要求。  相似文献   

20.
在 Pt/CeO_2/Al_2O_3催化剂中掺杂 Gd_2O_3制备了 Pt/Gd_2O_3/CeO_2/Al_2O_3催化剂,用氢程序升温还原(H_2-TPR)、X 射线衍射(XRD)和 CO 吸附原位漫反射红外光谱(DRIFTS)方法对 Gd_2O_3改性前后的 Pt/CeO_2/Al_2O_3催化剂进行了表征。H_2-TPR表征结果显示,Gd_2O_3改性促进了表面 CeO_2的还原,增强了 Pt-CeO_2间的相互作用;XRD 表征结果显示,这种强相互作用促使催化剂中的 Ce~(4+)向Ce~(3+)转变,有利于 CeAlO_3相的生成,抑制了 Pt 及 CeO_2在高温下的聚集;CO 吸附原位 DRIFTS 表征结果显示,Gd_2O_3改性 Pt/CeO_2/Al_2O_3催化剂后,Pt-CeO_2间的强相互作用使 Pt 的缺电子性增强。在含硫300μg/g 的异辛烷蒸汽重整反应中,Pt/Gd_2O_3/CeO_2/Al_2O_3催化剂在250 h 的运行过程中,表现出优异的活性和抗硫中毒稳定性,异辛烷转化率保持在100%,产物中H_2的摩尔分数维持在73%左右,甲烷的摩尔分数维持在1%以下。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号