首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 325 毫秒
1.
以硝酸铋为催化剂,1-甲基咪唑四氟硼酸盐离子液体([HMIM]BF_4)为萃取剂和助催化剂,H_2O_2为氧化剂氧化脱除模拟油中的二苯并噻吩(DBT)。考察了反应温度、H_2O_2用量、催化剂用量、离子液体用量对脱硫率的影响。结果表明,在模拟油5mL、硝酸铋加入量0.02g、[HMIM]BF_4加入量1.0mL、H_2O_2加入量0.3mL、反应温度80℃、反应时间180min的最佳条件下,模拟油的DBT脱除率可以达到99.5%。催化剂循环使用5次活性无明显下降。对硝酸铋的氧化脱硫机理进行了解释。  相似文献   

2.
采用水热法合成了不溶于水的NiWO_4纳米粒子。采用XRD、SEM、EDS和BET表征了NiWO_4纳米材料的形貌和结构特征。以NiWO_4作为催化剂,H_2O_2作为氧化剂,1-乙基-3-甲基咪唑硫酸乙酯离子液体([EMIM][EtSO_4])作为萃取剂氧化脱除模拟油中的二苯并噻吩(DBT)。考察了不同氧化脱硫体系,氧化剂、催化剂和离子液体用量,反应温度对脱硫效果的影响,也比较了不同种类含硫化合物的脱除效果。结果表明,在温和的操作条件下NiWO_4就具有很好的脱硫活性。在5.00 mL模拟油,0.20 mL H_2O_2,0.50 mL[EMIM][EtSO4],0.01g NiWO_4,反应温度80℃,反应时间160 min的最佳条件下,模拟油中DBT的脱除率可以达到98.46%。NiWO_4具有很好的催化稳定性,重复使用10次催化活性没有明显降低。此外,讨论了NiWO_4催化氧化脱硫反应机理。  相似文献   

3.
合成了 Dawson 型磷钼钒杂多酸,采用傅里叶变换红外光谱和 X 射线衍射等方法表征了磷钼钒杂多酸的结构;以环己醇为原料、H_2O_2为氧化剂、磷钼钒杂多酸为催化剂制备了环己酮,考察了催化剂的钒含量、溶剂的类型和反应条件(催化剂用量、H_2O_2用量、反应时间和反应温度)对环己醇氧化反应的影响。实验结果表明,钒含量适中的 H_8P_2Mo_(16)V_2O_(62)催化剂活性最高,乙腈是该反应的优质溶剂。环己醇催化氧化制备环己酮的适宜反应条件为:环己醇0.05 mol、H_8P_2Mo_(16)V_2O_(62)催化剂用量0.25 mmol、质量分数30%的 H_2O_2溶液用量20 mL、反应时间2 h、反应温度80℃、乙腈用量10 mL;在此条件下,环己醇转化率为59.3%,环己酮选择性为73.5%。  相似文献   

4.
以正辛烷为溶剂、噻吩(THP)为模型硫化合物组成模拟轻质油品,以自合成的中孔分子筛Ti-MCM-41为催化剂,H_2O_2和HCOOH分别为氧化剂和助氧化剂,对其进行氧化抽提脱硫实验.采用正交实验得到较佳反应条件,即H_2O_2添加量为体积分数1%、反应时间40 min、反应温度50℃.在此条件下,噻吩脱除率为95.6%,油收率为98.7%.进一步考察了Ti-MCM-41分子筛不同用量和重复利用次数对反应脱硫率和油品收率的影响.动力学研究表明,以Ti-MCM-41/H_2O_2·HCOOH为催化氧化体系,模拟轻质油中噻吩的脱除反应为表观一级反应,反应活化能E_a为40.18 kJ/mol.  相似文献   

5.
通过简单加热氯代正丁基吡啶([C_4Pyr]Cl)和对甲苯磺酸(TsOH)的混合物制备了[C_4Pyr]Cl/nTsOH,(n=0.1,0.2,0.3)型低共熔溶剂。以[C_4Pyr]Cl/nTsOH为催化剂和萃取剂,H_2O_2为氧化剂组成萃取-催化氧化脱硫体系氧化脱除模拟油中的硫化物。通过FTIR表征,确定[C_4Pyr]Cl/0.2TsOH的结构以及氧化产物,并考察了不同脱硫体系、n(TsOH)∶n([C_4Pyr]Cl)、低共熔溶剂加入量、反应温度、n(H_2O_2)∶n(二苯并噻吩)和含硫化物类型对脱硫效果的影响。实验结果表明,在低共熔溶剂[C_4Pyr]Cl/0.2TsOH加入量1.00 m L、反应温度50℃、n(H_2O_2)∶n(二苯并噻吩)=6、模拟油用量5 m L的反应条件下,[C_4Pyr]Cl/0.2TsOH对二苯并噻吩、4,6-二甲基二苯并噻吩和苯并噻吩的脱硫率分别达98.2%,96.0%,40.2%。由一级动力学方程和Arrhenius方程计算氧化脱除二苯并噻吩所需的表观活化能约为51.95 k J/mol。[C_4Pyr]Cl/0.2TsOH回收利用5次后,脱硫率仍不低于95.1%。  相似文献   

6.
采用浸渍沉淀法制备了固体超强酸S2O2-8/ZrO2 AC催化剂,以二苯并噻吩(DBT)的正十二烷溶液为含硫化合物模拟油(硫质量分数为400 μg/g),H2O2为氧化剂,考察催化剂的催化氧化脱硫性能,采用BET、XRD、FT IR和NH3 TPD分析手段对其结构进行了表征。利用所制备的催化剂,考察了反应温度、反应时间、氧化剂用量、催化剂用量和乳化剂Span60用量对脱硫效果的影响。结果表明,当活性组分ZrO2负载量(质量分数)为10%,焙烧温度为650℃,所制备的S2O2-8/ZrO2 AC催化剂的催化氧化脱硫活性最高;其氧化20 mL模拟油的最佳操作条件为反应温度60℃、反应时间60 min、氧化剂/硫摩尔比5、乳化剂Span60用量01g,催化剂用量以每1 mL模拟油添加004 g计。在此条件下,DBT基本全部转化为相应的砜,采用N,N 二甲基甲酰胺(DMF)萃取,DMF/汽油体积比为1/4时,模拟油的脱硫率可以达到976%,回收率为925%,并且催化剂具有较好的稳定性。  相似文献   

7.
高性能环氧树脂二氧化双环戊二烯的制备   总被引:1,自引:0,他引:1  
以H_3PW_(12)O_(40)/SiO_2为催化剂,H_2O_2为氧源催化氧化双环戊二烯环制备了高性能环氧树脂二氧化双环戊二烯。考察了催化剂用量、反应物料比、反应温度、反应时间及反应溶剂等条件对环氧化反应的影响。适宜的工艺条件为:三氯甲烷为溶剂,0.5 g负载量30%的H_3PW_(12)O_(40)/SiO_2为催化剂,n(C_(10)H_(12)):n(H_2O_2)= 1:3,反应温度60℃,反应时间12 h。在此条件下,反应物的转化率可达到68.9%,二氧化双环戊二烯的选择率达到97.2%.该催化剂重复使用3次后,催化活性依然保持很好。产物经质谱分析为目标产物,并利用红外光谱、微孔测量仪对催化剂结构、性能进行了表征。  相似文献   

8.
制备了亲水性离子液体1-丁基-3-甲基咪唑四氟硼酸盐([Bmim]BF4)和4种季铵型六聚钨酸盐催化剂,通过FTIR,UV-Vis,TG等方法对它们的结构进行了表征;考察了以H2O2为氧化剂,季铵型六聚钨酸盐催化剂在离子液体[Bmim]BF4中相转移催化氧化模拟油中二苯并噻吩(DBT)的活性。实验结果表明,随H2O2和催化剂用量的增加、反应温度的升高和反应时间的延长,DBT脱除率单调增加;适宜的反应条件为:以季铵型六聚钨酸盐[C18H37(CH3)3N]2W6O19为催化剂,模拟油用量5mL、离子液体[Bmim]BF4用量1 mL、反应温度50℃、反应时间3.0 h、n(催化剂)∶n(DBT)=1∶10、n(H2O2)∶n(DBT)=4;在此条件下,该脱硫体系的DBT脱除率可达99.6%,其脱硫效果好于仅用离子液体萃取脱硫和无离子液体的催化氧化脱硫体系的脱硫效果。  相似文献   

9.
以己内酰胺为氢键受体、乳酸为氢键供体,合成了乳酸基低共熔溶剂,通过傅里叶变换红外光谱和氢核磁共振波谱分析表征确定了己内酰胺和乳酸间的氢键作用。以二苯并噻吩(DBT)与正辛烷混合得到的模拟油(简称DBT模拟油)为原料,以乳酸基低共熔溶剂为萃取剂和助催化剂、过氧化氢(H2O2)为氧化剂、钼酸铵为催化剂进行氧化脱硫试验,考察反应温度、n(H2O2)/n(DBT)、钼酸铵加入量、剂油体积比及硫化物类型对模拟油脱硫率的影响,确定最佳反应条件:反应温度为70 ℃,反应时间为100 min,n(H2O2)/n(DBT)为6∶1,钼酸铵质量浓度为4 g/L,剂油体积比为1∶10。在最佳反应条件下,DBT模拟油、4,6-二甲基二苯并噻吩模拟油和苯并噻吩模拟油的脱硫率分别为100%,98%,78%。脱硫反应重复进行5次后,乳酸基低共熔溶剂对DBT模拟油的脱硫率仍可达到95%,具有较好的重复使用性能。  相似文献   

10.
以二苯并噻吩的异辛烷溶液为模拟油、过氧化氢为氧化剂,在密闭钢制反应釜反应器中,考察了水洗铌酸、硝酸处理铌酸、硝酸及磷酸处理铌酸为催化剂的催化氧化脱硫性能。结果表明,硝酸及磷酸处理铌酸催化剂具有较高的催化活性和再生性能,在催化剂用量为5%、反应温度为60 ℃、反应时间为3 h、氧化剂H2O2与硫摩尔比为3、剂油体积比为1时,脱硫率可达96.34%。  相似文献   

11.
以纯硅介孔分子筛SBA-15为载体,铌酸为铌源,采用后合成法制备了催化剂Nb-SBA-15,通过X射线衍射(XRD)、BET分析、差热分析对所制样品进行了表征。以异辛烷的二苯并噻吩溶液为模拟汽油,对介孔分子筛催化剂Nb-SBA-15的制备条件以及催化氧化脱硫性能进行了研究。实验结果表明,当铌酸负载量小于30%时,催化剂Nb-SBA-15仍具有规则的二维六方介孔结构。介孔分子筛催化剂Nb-SBA-15具有较高的催化活性和稳定性,在铌酸负载量为15%、催化剂焙烧温度为300℃、反应温度为60℃、反应时间为60 min、氧化剂H_2O_2与硫摩尔比为3、剂(N-甲基吡咯烷酮、NMP)油体积比为1、催化剂用量为5%时,脱硫率可达96.30%。  相似文献   

12.
以双氧水为氧化剂、磷钨酸/半焦(HPW/Sc)为催化剂、N-甲基吡咯烷酮为萃取剂、Span60为乳化剂,对以苯并噻吩(BT)、二苯并噻吩(DBT)、 4,6-二甲基二苯并噻吩(4,6-DMDBT)为模型含硫化合物的模拟油进行氧化脱硫研究,考察磷钨酸负载量、氧化温度、氧化反应时间和模拟油中烯烃、芳烃和含氮化合物对含硫化合物脱除的影响。结果表明:催化剂的最佳磷钨酸负载量(w)为30%;在反应时间为60 min、反应温度为60 ℃、HPW/Sc2用量(w)为1.0%、Span60用量(w)为0.36%、n(H2O2)/ n(S)=3的条件下,DBT脱除率可达到99%,含硫化合物的氧化活性由大到小的顺序为DBT?4,6-DMDBT>BT;模拟油中的苯可促进DBT脱出,而喹啉和环己烯则抑制DBT的脱除。  相似文献   

13.
以钨酸钠和硝酸铵为原料采用水热法制备WO3微米棒。以WO3微米棒为催化剂,H2O2为氧化剂,对模拟油中的二苯并噻吩(DBT)进行催化氧化脱硫研究,考察不同的反应条件对DBT脱除效果的影响,确定适宜的反应条件。结果表明:H2O2/WO3/十六烷基三甲基溴化铵体系对DBT具有较高的脱除率;对于5 mL DBT质量分数为500 μg/g的模拟油,适宜的反应条件为:催化剂WO3纳米棒的用量0.01 g、n(H2O2)/n(DBT)=8、反应温度70 ℃、反应时间1.5 h、萃取剂N-N-二甲基甲酰胺加入量8 mL、萃取时间5 min,在该条件下DBT的脱除率为100%;催化剂循环使用5次后,DBT的脱除率没有明显下降。  相似文献   

14.
李瑞丽  李波  张平 《石油化工》2014,43(9):1024-1030
采用过饱和浸渍法制备了负载型催化剂HPW/ZrO_2(HPW为磷钨酸),利用XRD、FTIR和N_2吸附-脱附方法对催化剂进行了表征。以H_2O_2为氧化剂、十六烷基三甲基溴化铵(CTAB)为相转移催化剂,对比研究了HPW和HPW/ZrO_2催化剂的氧化脱硫性能,同时考察了氧化反应条件、催化剂的循环使用性能和氧化反应动力学。实验结果表明,HPW/ZrO_2催化剂的脱硫效果优于HPW催化剂;在n(H_2O_2):n(S)=4.0、HPW/ZrO_2催化剂用量为2.5%(基于柴油质量)、CTAB用量为0.25%(基于柴油质量)、氧化温度60℃、氧化时间90 min的条件下脱硫效果最佳,柴油中硫的含量由3 647 mg/L降至72 mg/L,脱硫率达98.0%。催化剂循环使用3次后脱硫率仍达95.3%,且该氧化脱硫反应符合一级动力学。GC-SCD分析结果显示,HPW/ZrO,催化氧化法易脱除柴油中加氢法难以脱除的二苯并噻吩及其衍生物。  相似文献   

15.
以氧化石墨(GO)和磷钼酸(PMoA)为原料,采用固相合成法制备了PMoA/GO复合材料,利用XRD、FTIR和SEM对所合成的材料进行表征。表征结果显示,PMo A/GO仍保持了PMoA的Keggin结构,PMo A成功插层到GO的片层结构中。以PMoA/GO为催化剂、H_2O_2为氧化剂,考察了催化剂对模拟油中噻吩的氧化脱硫性能。实验结果表明,反应温度为70℃、H_2O_2用量占模拟汽油体积3%、催化剂用量为15 mg/m L、反应时间为90 min的条件下,噻吩的转化率达87.6%。催化剂经离心、洗涤和干燥后,循环使用5次,依然保持良好的脱硫性能。  相似文献   

16.
以V_2O_5和磷酸为原料,采用有机溶剂法制得VPO催化剂;利用XRD,IR,TPR方法对VPO催化剂的物相及可还原性进行了表征;以乙苯选择性氧化制苯乙酮为探针反应,对VPO催化剂的催化性能进行了研究。表征结果表明,所制得的VPO催化剂中主要有V~(4+)的(VO)_2P_2O_7物相和V~(5+)的VOPO_4物相,即催化剂中存在V~(5+)/V~(4+)离子对,为乙苯选择性氧化反应提供了催化活性中心。以冰醋酸为溶剂、H_2O_2为氧化剂,将VPO催化剂用于乙苯选择性氧化反应时,在乙苯用量10.0mL、冰醋酸用量10.0mL、双氧水(H_2O_2质量分数30%)用量10.0mL、VPO催化剂用量30mg、反应温度343K、反应时间2.5h的条件下,产物苯乙酮的收率可达17.2%。  相似文献   

17.
TS-1分子筛催化H_2 O_2环氧化苯乙烯制环氧苯乙烷   总被引:3,自引:0,他引:3  
韩蔚  刘靖  谭涓 《石油化工》2008,37(10):1003
以 TS-1分子筛为催化剂、H_2O_2为氧化剂、尿素为助剂,进行了苯乙烯环氧化反应制环氧苯乙烷的实验。考察了 n(尿素):n(H_2O_2)、n(苯乙烯):n(H_2O_2)、催化剂用量、溶剂丙酮用量和反应温度对苯乙烯环氧化反应的影响;又考察了水热改性、硅烷化改性、有机碱改性3种改性方法制备的 TS-1催化剂的催化性能。以正丁胺改性的TS-1催化剂的催化性能最佳,苯乙烯环氧化反应的最佳条件:25 mmol苯乙烯,n(尿素):n(H_2O_2)=0.50,n(苯乙烯):n(H_2O_2)苯=3.0,0.15 mol 正丁胺改性的TS-1分子筛0.10 g,丙酮10 mL,反应温度60℃,反应时间10 h。在此条件下,苯乙烯的转化率为28.92%,环氧苯乙烷的选择性为77.59%,H_2O_2的利用率为96.98%。  相似文献   

18.
以4,6-二甲基二苯并噻吩与1-甲基萘的混合体系为对象,考察Co-Mo/γ-Al_2O_3催化剂中n(Co)/n(Co+Mo)对其催化加氢脱硫反应的加氢脱硫活性、加氢脱硫选择性、芳烃饱和活性以及反应氢耗的影响,并采用H2-TPR、XRD、Raman、TEM、XPS等表征手段对催化剂进行分析表征。结果表明,当n(Co)/n(Co+Mo)为0.3时,Co-Mo/γ-Al_2O_3中金属组分与载体间相互作用力最弱,硫化态催化剂Co-Mo-S相的比例、活性金属Mo的硫化度最高,MoS_2片晶的平均长度最短。相应地,该催化剂的加氢脱硫活性、加氢脱芳活性、直接脱硫选择性达到最高值,同时脱除每摩尔硫的氢耗、脱除每摩尔硫时芳烃饱和反应的氢耗均最低,即H_2利用率最高。活性金属存在形态特别是Co-Mo-S活性相数量是影响催化剂加氢脱硫活性、加氢脱芳活性、加氢脱硫选择性以及H_2利用率的重要因素。  相似文献   

19.
复合SiO2-WO3催化剂的制备、表征及氧化脱除苯并噻吩性能   总被引:1,自引:0,他引:1  
 采用溶胶-凝胶法制备了SiO2-WO3催化剂,并采用XRD、FT-IR、BET、TG-DTA等方法对催化剂进行表征。以苯并噻吩(BT)为模型化合物,H2O2为氧化剂,考察了催化剂的活性元素、制备方法、n(W)/n(Si)和焙烧温度对其催化氧化脱硫活性的影响。结果表明,W的引入降低了SiO2的比表面积,SiO2-WO3催化剂中W的主物相为WO3。在以W为活性组元,且n(W)/n(Si)为0.1时,500℃焙烧得到的SiO2-0.1WO3催化剂具有最好的催化脱硫活性。在模拟油20 mL、催化剂SiO2-0.1WO3用量0.04 g、n(H2O2)/n(S)为15.9、乙腈/模拟油体积比0.3、65℃反应60 min的条件下,苯并噻吩模拟油脱硫率可达99.3%。  相似文献   

20.
通过旋蒸法和离子交换法制备了TiO_2/Ni-ZSM-5催化剂,采用XRD、N_2吸附-脱附、UV-Vis、TG-DTA等手段对其进行表征,以石英管反应器考察了其光催化氧化脱硫性能,并研究了其光催化氧化反应动力学。实验结果表明:钛镍高度分散在ZSM-5表面上,镍的引入可以转移其对可见区域的光学响应程度,增强其光催化活性和其对太阳光的吸收。当催化剂用量为2 g/L、n(H_2O_2)/n(S)=4、反应温度为70℃、反应时间为3 h时,模拟柴油的脱硫率高达92.36%;其光催化氧化反应为一级反应,E_a=24.94 kJ/mol,指前因子A=1.08×10~5 min~(-1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号