首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
排气管的结构形式对旋流分离器的性能影响较大。采用数值模拟方法研究了扩散锥形排气管插入长度对旋流分离器分离性能的影响。利用Fluent中提供的RSM模型对旋流器内气相流场进行了数值计算,计算时只考虑连续相对颗粒产生的曵力作用。分析结果表明,增大排气管插入深度,分离器切向速度的最大值变小,压力损失减小;分离器分离效率随着第2项体积分数的增大而变大,当排气管插入深度在0.8a~1.0a时分离效率最大,当插入深度过大时导致环形空间变小,既增大了压降又促使短路流的形成;排气管最佳的插入深度为0.8a~1.0a。  相似文献   

2.
旋流分离器的结构参数对内部流场分布和分离效率等有重要影响。采用数值模拟和室内试验相结合的方法研究了排气管插入长度对柱状旋流分离器分离性能的影响。模拟研究发现,排气管插入长度的加长会引起分离器内部切向速度和轴向速度的衰减,降低旋流强度,同时造成压力损失的增加;但排气管插入分离器内部能够改善分离器分离空间的旋流不稳定性。室内试验研究发现,随着排气管插入长度的增大,分离器高效运行区范围略有缩小。综合各种因素,排气管插入柱状旋流分离器内部可以提升其分离性能,但插入长度不宜过长,研究中的排气管插入长度宜为分离器筒体直径的0.5倍。  相似文献   

3.
一种先旋流后膨胀型超声速分离器脱水性能实验   总被引:2,自引:0,他引:2  
根据角动量守恒原理,设计加工了一套包含中心体的先旋流后膨胀型超声速旋流分离装置,并搭建室内实验系统对该分离装置的脱水性能进行研究,主要分析了压力恢复系数对露点降的影响和旋流对分离器过流能力的影响。结果表明:经先旋流后膨胀型超声速旋流分离器分离后,分离器干气出口的水露点可达到−2.8℃,露点降可达34.9℃,且露点降随着压力恢复系数的增加而减小;保持分离器的压力恢复系数小于70%时,干气出口的水露点降最少达18℃,分离器可正常工作;在不同入口压力条件下,分离器的水露点降基本相同,分离器的流量适应能力较强,脱水性能稳定;旋流强度增加将减小通过分离器的流体质量流量,只有来流的质量流量达到设计的临界流量时,分离器才可正常工作。  相似文献   

4.
采用五孔球探针测量了无尘负荷条件下新型旋流-颗粒床耦合分离设备内复杂的三维气相流场,分析了内部流场特点。结果表明:在不同入口气速条件下,无量纲切向速度与无量纲轴向速度的分布形态基本类似;切向速度分布轴对称性较好,旋流中心与几何中心基本重合;切向速度沿轴向呈减小趋势,沿径向的分布则与常规旋风分离器不同;在入口环形空间内,切向速度在0°~180°方位区间内增大,而在180°~270°方位区间内减小;旋流空间内轴向速度整体方向向下,局部螺旋上升气流集中在筒-锥连接段270°方位;径向速度分布的规律不明显,在直筒段径向速度数值与轴向速度在同一数量级,且对气流方向有重要影响;在排气管入口截面处,外旋流方向与入口气速密切相关。各截面平均静压沿轴向呈增大趋势,结合动压场分布可判断出筒-锥连接段气体流量显著减小,部分气体螺旋向上进入颗粒床,在实际操作过程中可能会导致粉尘堆积。由于内置颗粒床的影响,设备内部的气相整体呈螺旋向下的旋流运动,内外旋流边界不太明显。排气管口处短路流、顶灰环与返混现象消失。  相似文献   

5.
旋流分离器目前已作为一种高效节能的新设备进入含油污水处理的工业应用阶段。借助于计算流体动力学(CFD)的方法,得到了两种旋流分离器内切向速度分布、轴向速度分布,以及变流量下的压力曲线与效率曲线。结果表明:同向出流旋流分离器的倒锥在旋流腔和大锥段上部,对切向速度的影响不大,在大锥段的下半部分,从截面Ⅱ开始,双锥旋流分离器的切向速度迅速下降,而同向出流旋流分离器的倒锥结构使得切向速度维持在一个较高水平;在旋流腔和大锥段,双锥旋流分离器的轴向速度要大于同向出流旋流分离器的轴向速度,同向出流旋流分离器的倒锥结构没有使轴向速度增加,倒锥结构对切向速度影响更明显。同向出流旋流分离器的底流出口截面尺寸小,故其压力损耗大,同向出流旋流分离器的内置倒锥结构对旋流腔和锥段的压力损失影响较小。两种结构旋流器的简化效率曲线表明,双锥旋流分离器比同向出流旋流分离器更适应处理量相对较低的情况,其处理范围更广。  相似文献   

6.
入口结构的设计对旋流分离器内部流场以及其分离效率具有重要的影响,而入口管的下倾角度就是其中一个重要的影响因素。柱状旋流分离器的切向速度呈Rankine涡特征,由靠近壁面的准自由涡和轴心位置的准强制涡组成。入口管的下倾造成分离器等高度截面上最大切向速度值的减小,同时增加了分离器内部流场的不均匀性:切向速度最低点位置沿轴向发生摆动,不同下倾角度摆动的方向和幅度不同;涡核边界往入口管的对面方向发生了摆动,摆动幅度随下倾角度的增加而增大。入口管的下倾使分离器内部压力分布的对称性变差,压力分布的扭曲程度随下倾角度的增加而增大。  相似文献   

7.
气-液旋流分离器内气相时均流场的试验研究   总被引:1,自引:0,他引:1  
采用多普勒激光测速仪对轴流式气-液旋流分离器内气相时均流场进行了测量研究,考察了导叶导角和流量变化对时均流场的影响。测量结果表明,在分离空间,切向速度分布呈现典型的Rankin涡结构,切向速度沿轴向衰减不明显,轴向速度由外围的下行流与内部的上行流构成,轴向速度随轴向向下而衰减。最大切向速度面与轴向LZVV面呈现与筒体相似的管锥形。对环形空间和集液槽内时均流场的结构进行了分析。环形空间与集液槽内切向速度分布趋势与分离空间内相似,集液槽内旋流强度远低于分离空间,最大轴向速度位置靠近轴心处。  相似文献   

8.
油气开采过程中普遍存在的多相流动严重影响生产效率,通过分离器有效实现气液分离是一种理想处理方法。在经典GLCC分离器基础结构上优化形成新型分离器,并基于FLUENT软件,采用雷诺应力RSM模型和Mixture模型对其分离效率进行验证计算。研究表明:稳流器扰乱流场准自由涡发展而避免底溢流口已分离的液相再次卷入旋流区,增加了气柱凝聚力,提高了分离效率;渐缩式锥形腔体可强化离心力场,使得旋流器壁到涡心的压力逐渐递减,流相在器壁停留时间增大,促进介质分离的同时也一定程度上提高了压降;螺旋式入口使得流体介质在螺旋管内实现分离的同时,压降也随之增大,压力损失主要用来提高流体旋转动能从而增强分离性能。  相似文献   

9.
采用数值模拟和实验相结合的方法,对研发的双叶轮动态旋流分离器性能进行系统研究。结果表明,随着涡板叶轮转速提高,装置分离效率逐渐增大,趋势逐渐平缓,最高效率可达97%以上;但是功耗会随着转速的提高呈指数增加,实验工况下推荐2100 r/min为最佳转速;涡板叶轮转速不变时,流量变化对腔体内部切向速度影响较小,使得处理量在50%~117%范围波动时,该水力旋流器都能保持较高的分离效率,效率变化在1%以内。研发的双叶轮动态旋流分离器具有分离效率高,抗流量波动能力强等特点,是一种高效的固 液分离技术。目前,相关技术装备已在我国南海文昌海上平台获得应用,效果良好。  相似文献   

10.
油水旋流分离器流场模拟分析与研究   总被引:11,自引:4,他引:11  
采用流场模拟方法研究了油水混合物在旋流分离器中的流动状况,湍流模型采用多相流中湍流Reynold应力输运方程模型(DSM),基本方程的离散和求解采用SIMPLEC算法。利用计算流体动力学(CFD)分析程序,对油水旋流分离器进行了计算与分析。结果表明:模拟流场的特征与理论描述和物理实验所得到的特征一致,并定量分析了流量对压降、流体粒径对分离效率的影响及其应对措施。所用方法为深入揭示旋流分离器中油水的分离规律提供了有效手段,可用于预测和分析旋流分离器的分离性能,结构优化及揭示特性参数影响旋流分离器性能的规律。  相似文献   

11.
入口结构决定着进入柱状气液旋流分离器的气-液分布及初始切向入口速度大小。对4种入口结构形式的柱状气液旋流分离器(GLCC)的分离性能进行了数值模拟和试验研究,并将模拟结果与试验结果进行对比。模拟时考虑了入口结构形式、气体体积分数和压力降对GLCC分离性能的影响。分析结果表明,入口结构对GLCC内部气液分布具有决定性作用,具有明显压力梯度的入口结构有助于改善旋流腔内气液分布;渐缩截面型入口有助于GLCC内部形成0速度分界面,0速度分界面的形成有利于降低GLCC溢流口的气体含液量,减少短路流,提高GLCC的综合分离性能。  相似文献   

12.
为准确测量旋风分离器旋涡尾端的位置,采用筒锥式旋风分离器,通过红墨水示踪可视化地研究了分离器内流型,对轴、径向不同位置的压力信号进行了测量分析,并讨论了影响旋涡尾端位置的因素。结果表明,在分离器筒体及锥体段,静压沿径向呈V型分布,具有较大的梯度;而在料腿顶部区域,静压梯度急剧衰减,趋于平坦;这一特性可作为旋涡尾端的识别标志,由此识别的旋涡尾端位置与液体示踪显示的液环位置几乎一致。在筒体及锥体段,分离器内旋流压力信号具有一定的波动频率,而外旋流则没有明显的主频;在旋涡尾端碰壁处,壁面压力信号具有内旋流的波动频率,并有较高的幅值。旋风分离器旋涡尾端位置受入口气速的影响较小,但随着入口面积比的增加而上移,随排气管直径的增加而向下延伸。  相似文献   

13.
新型三相分离器的压力特性   总被引:1,自引:0,他引:1  
在新型的三相旋流分离器分离实验的基础上,对旋流器样机的气液分离效率和压力特性进行分析研究。实验发现,随着入口流量的增加,分离器的底流压降和溢流压降呈指数形式增大,当入口流量为2.0m3/h时,样机的运行情况良好,气体基本全由溢流口排出,底流出口看不到有明显的气体排出。在实验室条件下,分离器的压力损失处于0.1MPa以内,符合油田现场的使用要求。  相似文献   

14.
为了研究排气管直径对旋风分离器内部流场的影响,采用雷诺应力模型对4种不同排气管直径的旋风分离器进行气相流场的数值模拟,同时引入Q判据识别内部空间涡的结构。结果表明,利用Q判据做出的涡等值面,可以较为直观地看出涡结构的变化趋势。在一定范围内,减小排气管的相对直径,可以使旋风分离器内部流动更加稳定;但当排气管直径过小时,内部湍动作用会加剧,能量损失加大。在壁面处,有封闭的涡线形成,能量损失加剧;改善壁面处的涡平衡,可以有效抑制封闭涡线的形成,从而减小能量损失,提高分离效率。此外,涡核摆动并不是随着排气管直径的增大就越剧烈,而是存在一个极值,在极值处涡核摆动整体最小;适当地调整排气管直径,有利于涡结构的平衡,提高流体的稳定性,从而提高分离效率。  相似文献   

15.
针对内部设有中心体的轴流式气-液旋流分离器,根据液滴在分离器内部旋流场的受力情况,建立分离器分离效率模型。实验发现,当液滴直径大于10 μm时,通过理论模型求得的液滴粒级分离效率与实验值吻合较好;在一定气速范围内,减小导流叶片出口角、增加中心体直径以及减小排气管直径均能够提高分离效率,即对于一定结构的分离器,存在相应的临界气速能够使分离器的分离效率达到最大值,随气速继续增大,分离效率呈下降趋势。根据实验结果提出分离器在不同工况下的设计准则,当气速高于临界气速时,为保证分离器分离效率,维持较低压降,设计导叶出口角为45°,中心体直径与筒体直径比为0.5,排气管直径与筒体直径比为0.85,分离器长度与筒体直径比为3。当入口气速低于临界气速时,可根据理论模型对分离器结构参数进行调整。  相似文献   

16.
朱浩东  杨敏 《石油机械》1995,23(2):15-18
论述了多功能旋流分离器在溢流管三种不同插入深度、六种不同流量组合工况下速度场的测试试验情况及分离器环形空间和分离空间内液流轴向速度和切向速度的分布状况,分析了这种分离器内部速度场的分布特点及溢流管不同插入深度、造旋臂、体侧臂、中心管等结构参数和流量比对速度场的影响,得出了溢流管直径和造旋臂直径是影响速度场的主要因素,而流量比对速度场的影响仅限于溢流管以下较小区域内的结论。  相似文献   

17.
采用螺线型旋风分离器实验装置,考察了排气管插入深度、螺线通道延伸段对螺线型旋风分离器分离性能的影响。结果表明,随着排气管插入深度的增加,螺线型旋风分离器的分离效率先增后减,当排气管的插入深度与进气口高度相等时,分离效率最高;添加螺旋通道延伸段,可在压力降不变的情况下有效提高分离器的分离效率。在本实验条件下,与普通螺线型旋风分离器相比,在相同压力降时,改进后的螺线型旋风分离器分离效率可提升6%~10%,能除尽10 μm以上的颗粒,对2 μm以下的超细颗粒也有较好的捕集效果。基于边界层分离理论,建立了螺线型旋风分离器的粒级效率计算公式,计算值与实验数据吻合性较好。  相似文献   

18.
基于CFD的离心式气-液分离器结构设计及仿真优化   总被引:2,自引:1,他引:1  
运用CFD技术优化设计了一种新型离心式气一液分离器,以去除气侵钻井液中的小气泡。通过CFD模拟,研究分析了该分离器内湍流状态下的2相流动,以及分层、分离、旋流等复杂现象。模拟结果显示,由于分离器内的运动部件——转鼓旋转,钻井液形成强迫旋流,不同密度的气、液相在离心力作用下发生分离。试验测试结果表明,该分离器试验模型的分离性能显著、稳定,保证了钻井液性能尤其是密度的稳定,从而验证了CFD的有效性。在内流场分析的基础上,对分离器试验模型进行仿真优化,改进了入口方式和转鼓结构。结果表明,切向入口有利于改善来液的流动;分离器增加1个旁通管形成循环支路后,有利于降低背压,使排气管壁上的液滴流回到分离器。  相似文献   

19.
对比研究了三种高压旋风分离器的结构及分离性能。发现在相同气速下,压力容器式旋风分离器外旋流处的切向速度高于另外两种分离器,中心涡核处轴向速度低于其余两种分离器;相同条件下的冷模对比试验显示,压力容器式旋风分离器的效率较另外两种分离器高1%~2%;压力容器式旋风分离器不仅结构简单,而且拥有较好的结构强度和分离性能,适合高压工况下应用。  相似文献   

20.
分离器设计是多相流分离计量的关键技术,基于GLCC旋流分离原理的多管旋流分离器多相流计量装置是以多管旋流分离器为核心,并与气液质量流量计、比例调节阀和计算机测控系统相结合的一种新型多相流计量装置。该装置采用多管旋流分离器,可以有效减小分离器直径和高度,节约装置占用空间,大幅降低成本,提高分离效率;同时采用模糊PID控制方案的比例调节阀控制分离器液位,保证计量装置有效运行,具有较强的抗干扰能力。现场试验证明:此装置可以适应较大范围的多相流变化,相对测量误差小于±2.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号