首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The principle of mirror microscopy has been adapted to provide a relatively low resolution surface microscope (<1000 ×), a large transfer width low energy electron diffractometer and a photoelectron analyser in k|| space. A focused electron beam of ? 10 kV is decelerated through a Johansson lens, reflected in front of the sample and reaccelerated back through the lens to produce an electron image over a field of view of a few microns. The image can be interpreted as a micrograph of work function variations on the surface if other effects (geometry, magnetic field) are uniform. In the LEED mode, diffracted beams virtually retain their positions on the screen over the whole impact energy range used (0.160 V). Secondary electrons are preferentially focused around the lens-gun electro-optic axis, thus effectively filtering them out from the diffraction pattern. The design has an inherently large coherence length, of up to 104 Å. Photoelectrons can similarly be imaged in k|| space on the detector plane. The addition of energy filtering at the screen allows the two-dimensional Fermi surface to be imaged.  相似文献   

2.
光电内窥参数检测装置   总被引:4,自引:1,他引:3  
报导一种新的光电内窥参数测量装置。将一半导体激光器发出的光束经柱面镜汇聚成一细线,通过特殊设计的折反棱镜将其沿轴线方向投影到管孔内壁,得到管孔内壁的光截轮廓,该轮廓经物镜成像到CCD光敏面,通过图像卡采集到计算机。在计算机图像测量及辅助提示下,完成参数测量。此外,该装置还可在测量显微镜横向移动导轨及读数手轮的配合下测量内孔中径。实验结果表明轴向测量的重复精度为±17μm;中径测量的重复精度为±12μm.它在工业制造领域内具有广阔的应用前景。  相似文献   

3.
A pilot-type laser sensor for non-contacting distance measurement has been developed, which was aimed at application to in-process guidance of an industrial robot. A laser beam is emitted through a convex lens to an object and the reflected light is collected and focused by the lens. Diameter of its unfocused image is measured using one dimensional CCD-array, from which the distance is determined. Because the way of the beam emission and that of reflected light to the lens are the same, scanning of the beam to follow a path for robot guidance is easy and some geometric constraints, which may arise for a sensor using triangular principle, are removed. Geometric analyses for scanning the beam with a mirror are presented to determine the distance and position of an object point. A simple tracking control theory for the beam to follow a path and give informations about its position to a robot controller has been suggested and analyzed.  相似文献   

4.
Reductions in bright-field (BF) scanning transmission electron microscopy (STEM) and high-angle annular dark-field (HAADF) STEM image calculations with the aid of Bloch wave symmetry are discussed under assumptions that an absorption potential is written by a local potential and a zero-order Laue zone lies parallel to the crystal surface. Translational symmetry allows us to take only partial incident beams in the first Brillouin zone instead of enormous number of partial incident beams in a large convergent disk. Two dimensional point group confines partial incident beams to an irreducible area in addition to factoring a dispersion matrix into noninteracting submatrices on a high symmetry line using the projection operator. The drastic reductions in computing time and memory enable us to readily calculate various BF STEM and HAADF STEM images. The validity and accuracy are demonstrated in comparisons with high resolution experimental BF STEM and HAADF STEM images.  相似文献   

5.
A V Crewe 《Ultramicroscopy》1976,1(3):267-269
We conclude that a 150 V scanning microscope with a resolution of 10 A is quite feasible and could have considerable value. It might consist of a field emission source, an electron gun to decelerate the electrons, a condenser lens to produce a parallel beam, a multipole corrector and a short focal length objective lens. Electrons reflected from the specimen surface would pass through a spectrometer whose principal features would be a large collecting power and low (1/200) energy resolution. Finally, we should add that such a microscope presents a considerable challenge and new opportunities for the electron optician in both lens and spectrometer design. We cannot refrain from pointing out that the Scherzer theorem does not necessarily hold for such a lens since the constraints of the theorem do not apply to this case.  相似文献   

6.
Emission microscopes and related instruments comprise a specialized class of electron microscopes that have in common an acceleration field in combination with the first stage of imaging (i.e., an immersion objective lens, also called a cathode lens or emission lens). These imaging techniques include photoelectron emission microscopy (PEEM or PEM), electron emission induced by heat, ions, or neutral particles, mirror electron microscopy (MEM), and low-energy electron microscopy (LEEM), among others. In these instruments the specimen is placed on a flat cathode or is the cathode itself. The low-energy electrons that are emitted, reflected, or backscattered from the specimen are first accelerated and then imaged by means of an electron lens system resembling that of a transmission electron microscope. The image is formed in a parallel mode in all of the above instruments, in contrast to the image in scanning electron microscopes, where the information is collected sequentially by scanning the specimen. A brief history and introduction to emission microscopy, MEM, and LEEM is presented as a background for the Proceedings of the Second International Symposium and Workshop on this subject, held in Seattle, Washington, August 16-17, 1990. Current trends in this field gleaned from the presentations at that meeting are discussed.  相似文献   

7.
The University of Oregon scanning ion microprobe uses a 65 cm focal length plasma lens to form 8.65 × demagnified image of an object aperture. The plasma lens focuses a positive ion beam using the self-electric field of a trapped cylindrical column of electrons of density 3−9 × 109cm−3 and length 13–18 cm. Since the focusing field is electric, the focal length depends only on ion accelerating voltage and not on ion mass or charge state. Our 5 MV Van de Graaff accelerator illuminates the object aperture with a current density of ∼ 0.5 pA/mu;m2. The lens aperture is defined by a set of slits 3.35 m beyond the object aperture slits and 2.79 m from the lens. Four pairs of deflection plates are located between the intermediate aperture and the lens. Two pairs of plates are used for each scanning direction so the beam always passes through the lens center during rastering. The 1 kV operational amplifiers that drive these plates combine three sets of signals. Computer generated voltages raster the beam. Individual dc offset voltages align the beam with the lens axis. A small 60 Hz signal cancels the effects of background 60 Hz magnetic fields along the beam line. With 1 kV rastering voltage the rastered field at the focal plane is 3 mm square for 3 MeV ions. Focal spot size is now 10 μm with a 2 mm diameter lens aperture and 5 μm with a 0.5 mm lens aperture.  相似文献   

8.
The characteristics of scanning transmission electron microsopy, which make it a particularly powerful tool for the study of surfaces and small crystals, include the serial nature of the image signal which makes it amenable to recording and image processing procedures, the possibility of correlating the image data with microdiffraction patterns and microanalysis of chosen small regions and the possibilities for combining several different image signals obtained simultaneously. Images obtained from surfaces using reflected diffraction beams may be very sensitive to variations of surface structure but the resolution, depth of focus and contrast of the images are strongly dependent on the nature of the surface and the aperture sizes used in the microsope. Microdiffraction patterns may be obtained from small surface features. Electron energy loss analyses of the diffracted beams provides sensitive indications on surface electron excitations. Microdiffraction patterns obtained in transmission from regions of 1–5 nm diameter provide valuable information on the structure and defects of small crystals, such as those of platinum and gold which are of interest in relation to the study of catalysts.  相似文献   

9.
This article reports about the development and application of a standing-wave fluorescence microscope (SWFM) with high nodal plane flatness. As opposed to the uniform excitation field in conventional fluorescence microscopes an SWFM uses a standing-wave pattern of laser light. This pattern consists of alternating planar nodes and antinodes. By shifting it along the axis of the microscope a set of different fluorescent structures can be distinguished. Their axial separation may just be a fraction of a wavelength so that an SWFM allows distinction of structures which would appear axially unresolved in a conventional or confocal fluorescence microscope. An SWFM is most powerful when the axial extension of the specimen is comparable to the wavelength of light. Otherwise several planes are illuminated simultaneously and their separation is hardly feasible. The objective of this work was to develop a new SWFM instrument which allows standing-wave fluorescence microscopy with controlled high nodal plane flatness. Earlier SWFMs did not allow such a controlled flatness, which impeded image interpretation and processing. Another design goal was to build a compact, easy-to-use instrument to foster a more widespread use of this new technique. The instrument developed uses a green-emitting helium–neon laser as the light source, a piezoelectric movable beamsplitter to generate two mutually coherent laser beams of variable relative phase and two single-mode fibres to transmit these beams to the microscope. Each beam is passed on to the specimen by a planoconvex lens and an objective lens. The only reflective surface whose residual curvature could cause wavefront deformations is a dichroic beamsplitter. Nodal plane flatness is controlled via interference fringes by a procedure which is similar to the interferometric test of optical surfaces. The performance of the instrument was tested using dried and fluorescently labelled cardiac muscle cells of rats. The SWFM enabled the distinction of layers of stress fibres whose axial separation was just a fraction of a wavelength. Layers at such a small distance would lie completely within the depth-of-field of a conventional or confocal fluorescence microscope and could therefore not be distinguished by these two methods. To obtain futher information from the SWFM images it would be advantageous to use the images as input-data to image processing algorithms such as conceived by Krishnamurthi et al. (Proc. SPIE, 2655, 1996, 18–25). To minimize specimen-caused nodal plane distortion, the specimen should be embedded in a medium of closely matched refractive index. The proper match of the refractive indices could be checked via the method presented here for the measurement of nodal plane flatness. For this purpose the fluorescent layer of latex beads would simply be replaced by the specimen. A combination of the developed SWFM with a specimen embedded in a medium of matched refractive index and further image processing would exploit the full potential of standing-wave fluorescence microscopy.  相似文献   

10.
A variable pressure scanning electron microscope (VPSEM) can produce a topographic surface relief of a physical object under examination, in addition to its two‐dimensional (2D) image. This topographic surface relief is especially helpful when dealing with porous rock because it may elucidate the pore‐space structure as well as grain shape and size. Whether the image accurately reproduces the physical object depends on the management of the hardware, acquisition, and postprocessing. Two problems become apparent during testing: (a) a topographic surface relief of a precision ball bearing is distorted and does not correspond to the physical dimensions of the actual sphere and (b) an image of a topographic surface relief of a Berea sandstone is geometrically tilted and topographically distorted even after standard corrections are applied. The procedure presented here is to ensure the veracity of the image, and includes: (a) adjusting the brightness and contrast levels originally provided by the manufacturer and (b) tuning the amplifiers of the backscatter detector plates to be equal to each other, and producing zero voltage when VPSEM is idle. This procedure is tested and verified on the said two physical samples. SCANNING 31: 59–64, 2009. © 2009 Wiley Periodicals, Inc.  相似文献   

11.
建立了一个近红外CCD熔池动态信息的图像检测系统,用于钢表面铜熔池视觉信息的检测.应用窄带滤光技术成功地解决了强弧光干扰,在获取清晰的焊接熔池区图像的基础上,研究了焊缝熔池几何尺寸的边缘检出方法,获得了满意的熔池边缘特征图像.  相似文献   

12.
Implementation of a laser scanning confocal microscope is described, where the specimen is scanned by an array of illuminating beams, which significantly increases the velocity of object image construction. The array formation is provided by using a diffractive optical element. Scanning by the array of laser beams over the specimen is performed by galvanometric scanners with moving refractive plane-parallel plates. Owing to application of such a scanning device, the beams in the illuminating channel and the signal beams in the receiving channel pass through one motionless array of confocal diaphragms; as a result, the scanning beams in the specimen plane and the signal beams in the plane of the photodetector matrix can be used without an additional synchronized pair of scanners. The proposed confocal microscope can be applied in problems that require a fast response.  相似文献   

13.
一种基于高斯光束的平凹激光腔对准方法   总被引:1,自引:1,他引:1  
给出了一种基于高斯光束的平凹激光腔对准方法。在高斯准直光束后加一透镜系统,恰当地调整准直高斯光束到某一种汇聚发散的状态。在这种状态下,可使由平凹腔凹面镜和平面镜反射回来的光斑直径大小相仿,解决了不加透镜系统时,两反射回来光斑直径相差很大,难于对准的问题,提高两光斑的对准精度。实验使用束腰为0.6 mm的氦氖光,其后加一优化好的透镜系统,在889 mm的距离下,对凹面镜曲率半径为50 mm的平凹腔进行对准。得到由凹面镜和平面镜反射回来的光斑直径分别为4.8 mm和5.1 mm,平凹腔的角度对准精度达到了3.18'。对准好的腔体在点亮LD后,均能出基模光斑。实验结果与理论分析相符,证明了该对准方法结构简单,执行方便。  相似文献   

14.
A two-dimensional (2D) angle probe was developed to realize a new scanning multi-probe instrument employing 2D angle probes for flatness measurement of large silicon wafers. Each probe, which utilizes the principle of autocollimation, detects the 2D local slope components of a point on the wafer surface. The 2D local slopes (angles) are obtained through detecting the corresponding 2D positions of the reflected light spot on the focal plane of the object lens using position-sensing devices (PSDs). To make the probe compact in size, it is more effective to improve the sensitivity of angle detection by selecting proper PSDs than using an objective lens with a larger focal distance. Two kinds of photo devices, linear lateral effect PSDs and quadrant photodiodes (QPD), for sensing 2D positions were discussed theoretically and experimentally. It was shown that a QPD is the best for highly sensitive 2D angle detection. In the experiments, a compact prototype angle probe with dimensions 90(L)mm×60(W)mm×30(H) mm employing a QPD as the PSD was confirmed to have a resolution of approximately 0.01 arc-second.  相似文献   

15.
红外畸变图像并行校正快速实现算法研究   总被引:4,自引:1,他引:3  
在广角镜头热像仪目标检测与跟踪系统中,需要对红外图像进行畸变校正处理.目前常用的FPGA算法没有充分利用其并行机制,不仅耗用资源多,运行速度也受到一定限制.分析了常规FPGA畸变校正算法存在串行结构问题,提出充分并行的FPGA算法.根据径向畸变沿光学中心对称的特点,采用了4个并行处理单元进行校正处理,并且用较少的查找表资源实时计算校正地址.在进行双线性插值运算时,采用并行存取结构提高访问效率.通过在FPGA芯片上实验验证,表明该算法具有很好的实时性,占用资源较少,实现了在线实时校正畸变的功能.  相似文献   

16.
为了克服传统棋盘格模板标定点检测算法对于遮挡、视角、照明和畸变的局限性,提出一种利用基准点标记代替传统棋盘格黑白方块的改进模板,同时提出模板标定点的相应全自动识别算法.为了提高标定模板的质量,标定模板通过LCD(liquid crystal display)显示.因为LCD具有极高的几何精度和纯平面性,从而提高标定精度.传统摄像机标定同时计算针孔模型和透镜畸变模型,从而2种模型耦合在一起,所得到的标定结果仅对训练数据是有效的,而算法对于新数据的标定误差增加.为了克服2种模型的耦合,提出一种分离地标定2种模型的方法.算法利用模板的射影不变量约束,即交比和直线的射影为直线,求解带有畸变的标定点的校正的坐标,然后线性地求解2种模型.实验结果表明算法稳定且精度高.  相似文献   

17.
Pseudo-vibration sensitivities in laser vibrometry are the consequence of measurement noise generated by surface motions other than that on-axis with the incident laser beam(s), such as transverse and tilt vibrations or rotation. Concentrating solely on commercial laser vibrometers to maximise value to the vibrometer user, this paper quantifies pseudo-vibration sensitivities for five single beam instruments (for translational vibration measurement) and two parallel beam instruments (for angular vibration measurement) across a range of surface treatments and roughnesses. Transverse, tilt and rotation sensitivities are quantified for the single beam instruments. In-plane rotation, rotation and tilt sensitivities are quantified for the parallel beam instruments. Estimates of sensitivities for parallel beam instruments based on related quantifications for single beam instruments are shown to offer order-of-magnitude agreement. Further confirmation is provided of the benefits of smaller laser beams for measurements on tilting or rotating surfaces and of larger beams for measurements on surfaces with transverse motion. For rotor vibration applications, lower sensitivities are found for a focus location on the shaft rotation axis rather than its surface. Based on experimental evidence, refinements to the test methods are suggested with a view towards the formation of a Standard. These comprise placing limits on surface flatness and rotor out-of-roundness, inclusion of agreed ranges for target displacement amplitude and rotor diameter, and acknowledgement of the importance of focus location for rotation sensitivities.  相似文献   

18.
CRT投影管分辨率测试仪   总被引:3,自引:0,他引:3  
介绍一种CRT投影管分辨率测试仪,可以对CRT投影管的分辨率进行快速准确的测量。该仪器采用线阵CCD显微摄像机对投影管扫描线的线宽进行测量,测量数据经计算机处理后得到分辨率值。同时介绍了3英寸YAG投影管的分辨率测量结果。  相似文献   

19.
针对激光聚变装置冲击波速度被动测量的需求,设计了一种测速光学系统。采用高紫外透过率的氟化玻璃,实现了透射式300~800nm复消色差设计。系统光路具有前后两组镜头,中间为平行光,镜头间距可变,光路适应能力强。系统前端两侧的双目机器视觉能够完成自动寻的。平行光路中设置5个激光器,轴上的1个前向照明靶点用来观察条纹相机狭缝处的目标像质,轴外的4个与光轴平行后向传输用来标识系统光轴的位置,激光器部件可电动切入/切出。系统前组镜头F/#数为4,宽谱工作物方分辨率优于10μm,532nm单波长工作物方分辨优于5μm。该光学系统光路排布灵活,可单独被动测速,也可与主动测速系统VISAR耦合构成主被一体复合测速系统,满足激光聚变装置冲击波测速的需求。  相似文献   

20.
激光扫描系统中f-θ透镜的光学设计   总被引:2,自引:1,他引:1  
在激光扫描系统中f-θ透镜是重要的必不可少的部件,它在激光打标机、传真机、印刷机和用于制作半导体集成电路的激光图形发生器以及激光扫描精密计量设备等等光电系统中得到广泛的应用。文中设计了用于非接触在线检测工件尺寸的f-θ透镜。这种透镜的特点是一种负畸变透镜,属于像方远心光路,工作波长为单色光,像质要求波像差要小于λ/4,而且要求整个像面成平面且像质一致,无渐晕存在。所设计的f-θ透镜结构简单紧凑、焦距小、扫描精度高、加工成本较低,性能达到衍射极限,并具有像面上照度分布均匀,能量集中度高和相对畸变小等优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号