首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A graph is distance-hereditary if the distance stays the same between any of two vertices in every connected induced subgraph containing both. Two well-known classes of graphs, trees and cographs, both belong to distance-hereditary graphs. In this paper, we first show that the perfect domination problem can be solved in sequential linear-time on distance-hereditary graphs. By sketching some regular property of the problem, we also show that it can be easily parallelized on distance-hereditary graphs.  相似文献   

2.
In this paper we give a parallel algorithm for line-segment intersection reporting in the plane. It runs in timeO(((n +k) logn log logn)/p) usingp processors on a concurrent-read-exclusive-write (CREW)-PRAM, wheren is the number of line segments,k is the number of intersections, andp n +k.This work was supported by the DFG, SFB 124, TP B2, VLSI Entwurfsmethoden und Parallelität.  相似文献   

3.
In this paper we give efficient parallel algorithms for solving a number of visibility and shortest-path problems for simple polygons. Our algorithms all run inO(logn) time and are based on the use of a new data structure for implicitly representing all shortest paths in a simple polygonP, which we call thestratified decomposition tree. We use this approach to derive efficient parallel methods for computing the visibility ofP from an edge, constructing the visibility graph of the vertices ofP (using an output-sensitive number of processors), constructing the shortest-path tree from a vertex ofP, and determining all-farthest neighbors for the vertices inP. The computational model we use is the CREW PRAM.This research was announced in preliminary form in theProceedings of the 6th ACM Symposium on Computational Geometry, 1990, pp. 73–82. The research of Michael T. Goodrich was supported by the National Science Foundation under Grants CCR-8810568 and CCR-9003299, and by the NSF and DARPA under Grant CCR-8908092.  相似文献   

4.
In this paper we present an O(1/ logn)-time parallel algorithm for computing the convex hull ofn points in 3. This algorithm usesO(@#@ n1+a) processors on a CREW PRAM, for any constant 0 < 1. So far, all adequately documented parallel algorithms proposed for this problem use time at least O(log2 n). In addition, the algorithm presented here is the first parallel algorithm for the three-dimensional convex hull problem that is not based on the serial divide-and-conquer algorithm of Preparata and Hong, whose crucial operation is the merging of the convex hulls of two linearly separated point sets. The contributions of this paper are therefore (i) an O(logn)-time parallel algorithm for the three-dimensional convex hull problem, and (ii) a parallel algorithm for this problem that does not follow the traditional paradigm.This paper was presented in preliminary form at the 9th Annual ACM Symposium on Computational Geometry, San Diego, CA, May 1993 [32]. The work of N. M. Amato was supported in part by an AT&T Bell Laboratories Graduate Fellowship, the Joint Services Electronics Program (U.S. Army, U.S. Navy, U.S. Air Force) under Contract N00014-90-J-1270, and NSF Grant CCR-89-22008. This work was done while N. M. Amato was with the Department of Computer Science at the University of Illinois. The work of F. P. Preparata was supported in part by NSF Grants CCR-91-96152, CCR-91-96176, and ONR Contract N00014-91-J-4052, ARPA order 8225.  相似文献   

5.
Previous research on developing parallel triangulation algorithms concentrated on triangulating planar point sets.O(log3 n) running time algorithms usingO(n) processors have been developed in Refs. 1 and 2. Atallah and Goodrich(3) presented a data structure that can be viewed as a parallel analogue of the sequential plane-sweeping paradigm, which can be used to triangulate a planar point set inO(logn loglogn) time usingO(n) processors. Recently Merks(4) described an algorithm for triangulating point sets which runs inO(logn) time usingO(n) processors, and is thus optimal. In this paper we develop a parallel algorithm for triangulating simplicial point sets in arbitrary dimensions based on the idea of the sequential algorithm presented in Ref. 5. The algorithm runs inO(log2 n) time usingO(n/logn) processors. The algorithm hasO(n logn) as the product of the running time and the number of processors; i.e., an optimal speed-up.  相似文献   

6.
Dipen Moitra 《Algorithmica》1991,6(1):624-657
Given a black-and-white image, represented by an array of n × n binary-valued pixels, we wish to cover the black pixels with aminimal set of (possibly overlapping) maximal squares. It was recently shown that obtaining aminimum square cover for a polygonal binary image with holes is NP-hard. We derive an optimal parallel algorithm for theminimal square cover problem, which for any desired computation timeT in [logn,n] runs on an EREW-PRAM with (n/T) processors. The cornerstone of our algorithm is a novel data structure, the cover graph, which compactly represents the covering relationships between the maximal squares of the image. The size of the cover graph is linear in the number of pixels. This algorithm has applications to problems in VLSI mask generation, incremental update of raster displays, and image compression.The research reported here forms part of the author's doctoral dissertion, submitted to Cornell University in May 1989. This work was partially supported by NSF Grant DC1-86-02256, IBM Agreement 12060043, and ONR Contract N00014-83-K-0640. A preliminary version of this paper was presented at the 26th Annual Allerton Conference on Communications, Control, and Computing, Monticello, IL, September 28–30, 1988.  相似文献   

7.
We address the problem of approximating aminimum cycle cover in parallel. We give the first efficient parallel algorithm for finding an approximation to aminimum cycle cover. Our algorithm finds a cycle cover whose size is within a factor of 0(1 +n logn/(m + n) of the minimum-sized cover usingO(log2 n) time on (m + n)/logn processors.Research supported by ONR Grant N00014-88-K-0243 and DARPA Grant N00039-88-C0113 at Harvard University.Research supported by a graduate fellowship from GE. Additional support provided by Air Force Contract AFOSR-86-0078, and by an NSF PYI awarded to David Shmoys, with matching funds from IBM, Sun Microsystems, and UPS.  相似文献   

8.
In this paper we give parallel algorithms for a number of problems defined on point sets and polygons. All our algorithms have optimalT(n) * P(n) products, whereT(n) is the time complexity andP(n) is the number of processors used, and are for the EREW PRAM or CREW PRAM models. Our algorithms provide parallel analogues to well-known phenomena from sequential computational geometry, such as the fact that problems for polygons can oftentimes be solved more efficiently than point-set problems, and that nearest-neighbor problems can be solved without explicitly constructing a Voronoi diagram.The research of R. Cole was supported in part by NSF Grants CCR-8702271, CCR-8902221, and CCR-8906949, by ONR Grant N00014-85-K-0046, and by a John Simon Guggenheim Memorial Foundation fellowship. M. T. Goodrich's research was supported by the National Science Foundation under Grant CCR-8810568 and by the National Science Foundation and DARPA under Grant CCR-8908092.  相似文献   

9.
Let P andQ be two convex,n-vertex polygons. We consider the problem of computing, in parallel, some functions ofP andQ whenP andQ are disjoint. The model of parallel computation we consider is the CREW-PRAM, i.e., it is the synchronous shared-memory model where concurrent reads are allowed but no two processors can simultaneously attempt to write in the same memory location (even if they are trying to write the same thing). We show that a CREW-PRAM havingn 1/k processors can compute the following functions in O(k1+) time: (i) the common tangents betweenP andQ, and (ii) the distance betweenP andQ (and hence a straight line separating them). The positive constant can be made arbitrarily close to zero. Even with a linear number of processors, it was not previously known how to achieve constant time performance for computing these functions. The algorithm for problem (ii) is easily modified to detect the case of zero distance as well.This research was supported by the Office of Naval Research under Grants N00014-84-K-0502 and N00014-86-K-0689, and the National Science Foundation under Grant DCR-8451393, with matching funds from AT&T.  相似文献   

10.
We present a simple parallel algorithm for computing the greatest common divisor (gcd) of twon-bit integers in the Common version of the CRCW model of computation. The run-time of the algorithm in terms of bit operations isO(n/logn), usingn 1+ processors, where is any positive constant. This improves on the algorithm of Kannan, Miller, and Rudolph, the only sublinear algorithm known previously, both in run time and in number of processors; they requireO(n log logn/logn),n 2 log2 n, respectively, in the same CRCW model.We give an alternative implementation of our algorithm in the CREW model. Its run-time isO(n log logn/logn), usingn 1+ processors. Both implementations can be modified to yield the extended gcd, within the same complexity bounds.Supported in part by an IBM Graduate Fellowship and a Bantrell Postdoctoral Fellowship.Supported in part by a Weizmann Postdoctoral Fellowship.4 All logarithms are to base 2.  相似文献   

11.
Parallel updates of minimum spanning trees (MSTs) have been studied in the past. These updates allowed a single change in the underlying graph, such as a change in the cost of an edge or an insertion of a new vertex. Multiple update problems for MSTs are concerned with handling more than one such change. In the sequential case multiple update problems may be solved using repeated applications of an efficient algorithm for a single update. However, for efficiency reasons, parallel algorithms for multiple update problems must consider all changes to the underlying graph simultaneously. In this paper we describe parallel algorithms for updating an MST whenk new vertices are inserted or deleted in the underlying graph, when the costs ofk edges are changed, or whenk edge insertions and deletions are performed. For multiple vertex insertion update, our algorithm achieves time and processor bounds ofO(log n·logk) and nk/(logn·logk), respectively, on a CREW parallel random access machine. These bounds are optimal for dense graphs. A novel feature of this algorithm is a transformation of the previous MST andk new vertices to a bipartite graph which enables us to obtain the above-mentioned bounds.  相似文献   

12.
A parallel two-list algorithm for the knapsack problem   总被引:10,自引:0,他引:10  
An n-element knapsack problem has 2n possible solutions to search over, so a task which can be accomplished in 2″ trials if an exhaustive search is used. Due to the exponential time in solving the knapsack problem, the problem is considered to be very hard. In the past decade, much effort has been done in order to find techniques which could lead to practical algorithms with reasonable running time. In 1994, Chang et al. proposed a brilliant parallel algorithm, which needs O(2n/8) processors to solve the knapsack problem in O(2n/2) time; that is, the cost of Chang et al.'s parallel algorithm is O(25n/8). In this paper, we propose a parallel algorithm to improve Chang et al.'s parallel algorithm by reducing the time complexity to be O(23n/8) under the same O(2n/8) processors available. Thus, the proposed parallel algorithm has a cost of O(2n/2). It is an improvement over previous literature. We believe that the proposed parallel algorithm is pragmatically feasible at the moment when multiprocessor systems become more and more popular.  相似文献   

13.
We give the first efficient parallel algorithms for solving the arrangement problem. We give a deterministic algorithm for the CREW PRAM which runs in nearly optimal bounds ofO (logn log* n) time andn 2/logn processors. We generalize this to obtain anO (logn log* n)-time algorithm usingn d /logn processors for solving the problem ind dimensions. We also give a randomized algorithm for the EREW PRAM that constructs an arrangement ofn lines on-line, in which each insertion is done in optimalO (logn) time usingn/logn processors. Our algorithms develop new parallel data structures and new methods for traversing an arrangement.This work was supported by the National Science Foundation, under Grants CCR-8657562 and CCR-8858799, NSF/DARPA under Grant CCR-8907960, and Digital Equipment Corporation. A preliminary version of this paper appeared at the Second Annual ACM Symposium on Parallel Algorithms and Architectures [3].  相似文献   

14.
In this paper we describe and implement a parallel algorithm to find approximate solutions for the Closest String Problem (CSP). The CSP, also known as Motif Finding problem, has applications in Coding Theory and Computational Biology. The CSP is NP-hard which motivates us to think about heuristics to solve large instances. Several approximation algorithms have been designed for the CSP, but all of them have a poor performance guarantee. Recently some researchers have shown empirically that integer programming techniques can be successfully used to solve moderate-size instances (10–30 strings each of which is 300–800 characters long) of the CSP. However, real-world instances are larger than those tested. In this paper we show how a simple heuristic can be used to find near-optimal solutions to that problem. We implemented a parallel version of this heuristic and report computational experiments on large-scale instances. These results show the effectiveness of our approach.  相似文献   

15.
In 1994, Yan and Chung produced a fast algorithm for solving a diagonally dominant symmetric Toeplitz tridiagonal system of linear equations Ax = b. In this work a method will be presented which will allow for problems of the above nature to be split into two separate systems which can be solved in parallel, and then combined and corrected to obtain a solution to the original system. An error analysis will be provided along with example cases and time comparison results.  相似文献   

16.
We present the first in-place algorithm for solving Klee's measure problem for a set of n axis-parallel rectangles in the plane. Our algorithm runs in O(n3/2logn) time and uses O(1) extra words in addition to the space needed for representing the input. The algorithm is surprisingly simple and thus very likely to yield an implementation that could be of practical interest. As a byproduct, we develop an optimal algorithm for solving Klee's measure problem for a set of n intervals; this algorithm runs in optimal time O(nlogn) and uses O(1) extra space.  相似文献   

17.
18.
In this paper, we first show how a certain ordering of vertices, called bicompatible elimination ordering (BCO), of a proper interval graph can be used to solve efficiently several problems in proper interval graphs. We, then, propose an NC parallel algorithm (i.e., polylogarithmic-time employing a polynomial number of processors) in SIMD CRCW PRAM (Single Instruction Stream Multiple Data Stream Concurrent Read Concurrent Write Parallel Random Access Machine) model of parallel computation to compute a BCO of a proper interval graph. To the best of our knowledge, this is the first NC parallel algorithm to compute a BCO of a proper interval graph.  相似文献   

19.
We present a parallel algorithm for finding a maximum weight matching in general bipartite graphs with an adjustable time complexity of using O(nmax(2ω,4+ω)) processing elements for ω?1. Parameter ω is not bounded. This is the fastest known strongly polynomial parallel algorithm to solve this problem. This is also the first adjustable parallel algorithm for the maximum weight bipartite matching problem in which the execution time can be reduced by an unbounded factor. We also present a general approach for finding efficient parallel algorithms for the maximum matching problem.  相似文献   

20.
Nowadays genetic algorithms stand as a trend to solve NP-complete and NP-hard problems. In this paper, we present a new hybrid metaheuristic which uses parallel genetic algorithms and scatter search coupled with a decomposition-into-petals procedure for solving a class of vehicle routing and scheduling problems. The parallel genetic algorithm presented is based on the island model and its performance is evaluated for a heterogeneous fleet problem, which is considered a problem much harder to solve than the homogeneous vehicle routing problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号