首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
采用电化学方法制备聚亚甲基蓝(PMB)修饰阳极氧化铝(Anodic alumina oxide,AAO)纳米电极(PMB/AAO),并研究该电极的电化学性质和对抗坏血酸(AA)的催化氧化.结果表明:PMB/AAO纳米电极对AA有明显的催化氧化作用,其催化活性强于PMB/Au电极的催化作用.同时,应用线性扫描伏安法(Linear Sweep Voltammetry,LSV)对AA进行定量分析,其氧化峰电流与AA的浓度在5.0×10-6~1.0×10-3 mol/L范围内呈良好的线性关系,检出限为1.0×10-6 mol/L.该电极重现性良好,并将PMB/AAO用于维生素C片剂中AA的测定,结果令人满意.  相似文献   

2.
用循环伏安法研究细胞色素c在4-氨基-6-羟基-2-巯基嘧啶(AHMP)自组装修饰金电极上的直接电化学行为.对修饰条件进行优化,通过扫描电镜(SEM)等方法对修饰电极进行了表征.结果表明,细胞色素c在AHMP修饰金电极上能进行准可逆的电化学反应,氧化还原峰电位差(△Ep)为67mV.氧化与还原峰电流比ipa/ipe接近1,且峰电流与电位扫描速率的平方根(ν1/2)呈正比,属于扩散控制的准可逆过程,异相电子迁移速率常数(Ks)为1.93×10-4cm/s.  相似文献   

3.
采用涂覆法制备多壁碳纳米管(MWCNT)-离子液体([BMIM]PF6)修饰电极,研究Cu2+在该修饰电极上的阳极溶出伏安行为。考察了实验条件对Cu2+电化学行为的影响。研究表明,Cu2+在修饰电极上可得到灵敏的溶出峰。在优化的实验条件下,Cu2+在1.0×10-6~1.0×10-5mol/L浓度范围内与其氧化峰电流呈良好的线性关系,相关系数为0.998 4,检出限为9.0×10-8mol/L。该修饰电极制备简单,重现性好,用于微量铜的检测,效果良好。  相似文献   

4.
制备L -半胱氨酸自组装膜修饰金电极,并研究抗坏血酸在修饰电极上的电化学行为,同时建立了利用修饰电极催化作用快速测定抗坏血酸的方法.在含有抗坏血酸的0.1mol/L HAc-NaAc(pH=4.0)缓冲溶液底液中,在-0.20~0.60V(vs,SCE)电压范围内,用修饰电极作为工作电极进行循环伏安扫描,抗坏血酸分别在峰电位Epa=0.264V,Epc=0.199V(vs.SCE)处产生灵敏的催化氧化还原峰.修饰电极对抗坏血酸的催化氧化峰与抗坏血酸的浓度在4.0×10-7~7.0×10-4mol/L范围内呈良好的线性关系.用该方法测定抗坏血酸检出限可达1.0×10-7mol/L.利用该方法测定维生素C丸中的抗坏血酸含量,结果令人满意.  相似文献   

5.
采用电沉积技术在过氧化聚吡咯膜上制备纳米金,通过扫描电镜和X-射线光电子能谱对复合材料的形貌和结构进行表征。采用循环伏安和计时安培法研究烟酰胺腺嘌呤二核苷酸(Nicotinamide Adenine Dinucleotide,NADH)在纳米金/过氧化聚吡咯复合材料修饰玻碳电极上的电化学催化氧化反应。结果表明,复合材料修饰电极显著降低了NADH的氧化峰电位,峰电流与其浓度在2.0×10~(-7)~1.2×10~(-3)mol/L范围内呈现很好的线性关系,检测限为5.0×10~(-8)mol/L,该修饰电极可用于对NADH的线性检测。  相似文献   

6.
在含牛磺酸的磷酸盐缓冲溶液中,用循环伏安法在玻碳电极上制备聚牛磺酸薄膜.采用循环伏安法研究多巴胺(DA)和抗坏血酸(AA)在聚牛磺酸膜修饰电极上的电化学行为.实验结果表明聚牛磺酸膜修饰电极对DA的氧化具有良好的电催化作用和选择性,DA与AA氧化峰电位差达220 mV,对DA的电流响应灵敏度高出AA近十倍.在5×10-6~ 1×10-4 mol/L范围内,DA的浓度与峰电流呈良好的线性关系,相关系数为0.998 3,检测限为1.0×10-6 mol/L.该修饰电极能在AA共存时选择测定DA.  相似文献   

7.
在含茜素红的磷酸盐缓冲溶液中,用循环伏安法在制备好的碳纳米管修饰电极上电聚合茜素红膜,得到聚茜素红/碳纳米管复合修饰电极,并对复合修饰电极进行了电化学表征.研究了复合膜修饰电极对双酚A电催化作用的最佳条件.结果表明:双酚A的浓度在5.0×10-7~1.0×10-5mol/L范围内与峰电流呈良好的线性关系;检测限可达5.0×10-8mol/L.该复合修饰电极可作为电化学传感器用于双酚A的含量测定及环境水体中实际样品的分析.  相似文献   

8.
合成了纳米金胶,并将纳米金胶用于制备碳糊修饰电极(Au/CPE),应用循环伏安法研究了多巴胺在纳米金胶碳糊修饰电极上的电化学行为。实验结果表明,纳米金胶对多巴胺的电化学氧化具有明显的催化作用,多巴胺在纳米金胶修饰电极上的氧化电位明显负移,循环伏安峰电流显著增大。缓冲溶液的pH值为4—7时,多巴胺在纳米金胶修饰电极上有很好的电化学响应。在扫速低于300 mV/s范围内,该响应为一表面控制过程,并初步探讨了电催化机理。在0.04 MpH6.37的B-R缓冲溶液中,氧化峰电流与多巴胺的浓度在6.0×10-8—2.6×10-7M的范围内呈较好线性关系,线性相关系数达0.9121。  相似文献   

9.
在含赖氨酸的磷酸盐缓冲溶液中,用循环伏安法在制备好的纳米二氧化钛-壳聚糖玻碳电极上聚合聚赖氨酸薄膜,采用循环伏安法和示差脉冲法研究对甲基苯酚在聚赖氨酸/二氧化钛-壳聚糖修饰电极上的电化学行为.实验结果表明:聚赖氨酸/二氧化钛-壳聚糖修饰电极对对甲基苯酚的氧化具有良好的电催化作用,对甲基苯酚的浓度在6.0×10-6~1.0×10-4 mol/L范围内与峰电流呈良好的线性关系;检测限可达5.0×10-7 mol/L.该复合修饰电极可作为电化学传感器用于对甲基苯酚的含量测定及环境水体中实际样品的分析.  相似文献   

10.
在碳糊中加入CdTe量子点制成修饰电极(CdTe/CPE),并研究了多巴胺(DA)在该修饰电极上的电化学行为.实验结果表明:在pH 7.0 PBS缓冲液中,电极上的CdTe量子点对DA的氧化还原呈现明显的电催化作用,电催化过程为表面吸附控制过程.闭路吸附时间为60s达到饱和,此电极可用于测定DA,响应迅速(1.5 s).峰电流与DA浓度在4×10-4-5×10-5 mol/L范围内呈线性关系,灵敏度高达0.061 9 A·L/mol,检测极限可达1.4 × 10-6mol/L.  相似文献   

11.
制备石墨烯玻碳修饰电极,进而采用循环伏安法、交流阻抗等电化学方法对该电极进行表征,研究该石墨烯修饰电极在邻苯二酚和对苯二酚上的电化学行为.结果表明,在石墨烯修饰电极上邻苯二酚的氧化峰电位和还原峰电位分别是270mV和161mV,对苯二酚氧化峰电位和还原峰电位分别是145mV和64mV,由于邻苯二酚和对苯二酚的氧化峰电位大约相离125mV,还原峰大约相离97mV,因此适合同时检测邻苯二酚和对苯二酚.邻苯二酚和对苯二酚的浓度在5.0×10-6~1.0×10-4mol/L范围内与峰电流分别呈良好的线性关系;且在8.0×10-5~1.0×10-3mol/L范围能同时检测邻苯二酚和对苯二酚,邻苯二酚的检测限可达5.0×10~7mol/L,对苯二酚的检测限可达1.0×10-mol/L.该石墨烯修饰电极可作为电化学传感器用于邻苯二酚和对苯二酚的含量同时测定及环境水体中实际样品的分析.  相似文献   

12.
在含赖氨酸的磷酸盐缓冲溶液中,用循环伏安法在制备好的纳米二氧化钛-壳聚糖玻碳电极上聚合聚赖氨酸薄膜,采用循环伏安法和示差脉冲法研究对甲基苯酚在聚赖氨酸/二氧化钛-壳聚糖修饰电极上的电化学行为.实验结果表明:聚赖氨酸/二氧化钛-壳聚糖修饰电极对对甲基苯酚的氧化具有良好的电催化作用,对甲基苯酚的浓度在6.0×10^-6~1.0×10^-4mol/L范围内与峰电流呈良好的线性关系;检测限可达5.0×10^-7mol/L.该复合修饰电极可作为电化学传感器用于对甲基苯酚的含量测定及环境水体中实际样品的分析.  相似文献   

13.
利用循环伏安法研究了在0.2mol/L的LiClO4溶液中,乙酰基二茂铁(AFc)在圆盘电极(RDE)上的电化学行为,采用两种方法求得乙酰基二茂铁的扩散系数:一种是利用静止圆盘电极测定扩散系数,另一种是用旋转圆盘电极测定扩散系数。实验结果表明:乙酰基二茂铁在圆盘电极上的氧化还原反应为扩散控制的可逆过程,氧化还原峰电位差ΔEp≈56.5mV,电子转移数n=1。通过测定静止圆盘电极的电流-电位曲线,得到AFc的扩散系数Da=4.74×10-5 cm2/s,AFc+的扩散系数Dc=4.47×10-5 cm2/s。而通过测定旋转圆盘电极上的峰电流与电位扫描速率关系曲线,得到的AFc的扩散系数Da=5.20×10-5 cm2/s,AFc+的扩散系数Dc=5.07×10-5 cm2/s,比静止圆盘电极测定扩散系数略高。同时测定电极反应的还原过程的速率常数kfc=7.17×10-3 cm2/s,氧化过程的速率常数kfa=8.31×10-3 cm2/s。  相似文献   

14.
采用层层电沉积方法制备了双层聚吡咯/普鲁士蓝复合膜修饰复合陶瓷碳电极(D-Ppy/PB/CCE),采用循环伏安法和计时安培法研究了修饰电极对过氧化氢(H2O2)的电催化性能,并优化了制备修饰电极的实验条件.结果表明,第一层Ppy膜提高了PB在电极表面的分散性;第二层Ppy膜的存在极大地提高了修饰电极的化学及电化学稳定性.该修饰电极对H2O2的还原有良好的电催化活性,安培法检测H2O2的线性范围为2.0×10-6~2.5×10-3mol/L,检出限为6.5×10-7 mol/L,灵敏度为3 593.2μA/(mmol/L)cm2.  相似文献   

15.
研究了一种基于聚硫堇/纳米金复合材料修饰电极对NO2-的电催化氧化。相对于裸玻碳电极,聚硫堇-纳米金协同催化效应使NO2-的氧化电流增强,过电位降低。详细讨论了聚合膜的厚度、纳米金吸附时间、pH缓冲介质、pH值以及干扰离子对NO2-氧化电流的影响。在最优实验条件下,测得NO2-的线性范围为3.0×10^-6~1.0×10^-3 mol/L,检测限为1.0×10^-6 mol/L。该修饰电极具有灵敏度高、稳定性和重现性好、抗干扰能力强的特点,可用于实际样品中NO2-含量的测定,结果满意。  相似文献   

16.
采用溶胶凝胶法制备了二茂铁微粒后,将所得二茂铁微粒超声分散于甲基三甲氧基硅烷形成的溶胶结构中,得到了溶胶凝胶固载的二茂铁纳米粒子,并制成化学修饰碳糊电极.采用扫描电镜(SEM)方法对制得粉体微粒进行表征,并通过循环伏安实验与计时安培实验测试修饰电极的电催化活性.结果表明:采用溶胶凝胶法分散的二茂铁纳米粒子,粒径约为300nm,将二茂铁固载于SiO2的凝胶结构中有效地提高了修饰电极的稳定性与二茂铁的分散性.在优化的实验条件下,修饰电极对抗坏血酸(AA)的氧化具有明显的催化作用,安培法检测AA的线性范围为3.0×10-6~2.5×10-3 mol/L,检出限为1.0×10-6 mol/L(3sb,n=10).  相似文献   

17.
利用差示脉冲溶出伏安技术和叶酸在电极表面的吸附特性,建立了测定痕量叶酸的电化学分析方法.方法具有快速、简便、灵敏度高、干扰少的优点.在不富集的实验条件下,差示峰电流与叶酸浓度在3.39×10-8~3.73×10-7mol/L范围内呈良好线性关系;而在-0.25V电位吸附富集70s条件下,其线性范围为6.78×-10~2.27×10-8mol/L,检测限达1.0×10-11mol/L。将该方法应用于小米和玉米中微量和痕量叶酸的测定,结果满意,回收率在94%~102%之间.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号