首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
ABSTRACT: Thermorheological behavior of Alaska pollock (AP) and Pacific whiting (PW) surimi was evaluated during gelation at different moisture contents (80% to 95%). The temperature sweep data (storage modulus, G', compared with temperature) for both surimi clearly indicated G' minima. Unlike for the PW surimi, the minimum values of the AP surimi was moisture-content dependent and there was a linear relationship between logarithm of concentration and reciprocal absolute temperature at gelation. The activation energy ( Ea ) for aggregation after gelation temperature at each moisture content was calculated by a nonisothermal kinetic model for both AP and PW Surimi. The Ea values increased with moisture content of the system and ranged from 172.8 to 232.9 kJ/mol. Based on the assumption that melting temperature for a thermo-reversible gel may be considered equivalent to gelation temperature for thermo-irreversible gels, an Arrhenius-type model was used to estimate the enthalpy of cross-links formation for AP surimi to be 300.3 kJ/mol.  相似文献   

2.
S.J. Hur  Y.J. Choi  S.K. Jin 《LWT》2011,44(6):1482-1489
Imitation crab stick (ICS) samples were divided into four treatments, a control (C) prepared with Alaska Pollack as a commercial ICS, T1, which consisted of Alaska Pollack with spent laying hen surimi collected by the pH adjust method, T2, which was composed of Alaska Pollack with spent laying hen surimi collected by the filter cake method, and T3, which consisted of Alaska Pollack with whole spent laying hen meat batter collected by the cutting method. The moisture content was significantly higher in T3 than in the other ICS samples; but, there was no significant difference in the crude protein, fat and ash content, regardless of the spent laying hen substitution methods. The lightness (L∗) and whiteness (W) was higher in the control than in the other ICS samples at 0 days of storage, whereas the yellowness (b∗) was significantly higher in T3 than in the other ICS samples. The level of polyunsaturated fatty acids was significantly higher in the control group than in the other ICS samples. Additionally, the pH increased with storage time in the spent laying hen substituted samples (T1, T2 and T3), with T1 showing a significantly higher pH during storage. The TBARS value increased with storage time in all ICS samples, with T2 showing a significantly lower TBARS value than the other ICS samples at the beginning and end of the storage periods. There was no significant difference in any sensory evaluation items among the ICS samples during storage. Thus, we assumed that T3 was better than other ICS samples, because T3 method (cutting) is much easier to collect spent laying hen surimi than T1 (pH adjust) and T2 (filter cake).  相似文献   

3.
4.
Effects of whey protein concentrate (WPC) on autolysis inhibition and gel properties of surimi produced from bigeye snapper (Priacanthus tayenus), goatfish (Mulloidichthys vanicolensis), threadfin bream (Nemipterus bleekeri) and lizardfish (Saurida tumbil) were investigated. WPC (0–3%) showed inhibitory activity against autolysis in all surimi at both 60 and 65 °C in a concentration-dependent manner. Myosin heavy chain (MHC) of surimi was more retained in the presence of WPC. Breaking force and deformation of kamaboko gels of all surimi increased as added levels of WPC increased (P < 0.05). This was associated with lower levels of protein degradation, as evidenced by the decrease in trichloroacetic acid-soluble peptide content (P < 0.05). WPC at 3% (w/w) significantly decreased the whiteness of gels. However, water-holding capacity of kamaboko gels was improved with increasing concentration of WPC. The microstructure of surimi gels generally became denser with the addition of WPC.  相似文献   

5.
Fish gelatin extraction from wastes of fish Herring species (Tenualosa ilisha) was carried out by a series of pretreatment with 0.2 M Ca(OH)2 followed by 0.1 M citric acid and final water extraction at 50 °C for 3 h. The resulting fish gelatin preparation was evaluated for its dynamic viscoelastic properties, gelling and melting temperatures and gel strength. The gelling and melting temperatures of gelatin samples (at 6.67%, w/v) were obtained from differential scanning calorimetry and rheological studies. The melting temperature of extracted fish gelatin (EFG) obtained ranged from 16.2 to 16.7 °C compared to that of commercial fish gelatin gel (CFG), from 23.7 to 25.6 °C and halal bovine gelatin (HBG), from 26.5 to 28.7 °C. On the other hand, gelling temperatures of EFG, CFG and HBG ranged from 5.1 to 5.2 °C, 11.9 to 17.46 °C, and 12.6 to 19.33 °C, respectively. EFG gave gels with a considerably lower G′ values than CFG and HBG. The bloom strength of EFG gels at 6.67% (w/v) was 69.03 g which was much lower than HBG (336.2 g) and CFG (435.9 g). Enzyme transglutaminase was added in the amounts of 0.5, 1.0, 3.0 and 5.0 mg/g gelatin to modify the gel properties of the extracted fish gelatin. The modified EFG gels obtained had higher gel strengths of 101.1 g and 90.56 g with added transglutaminase of 1.0 and 3.0 mg/g, respectively. However with addition of 5.0 mg/g enzyme the gel strength increased only up to 75.06 g. SDS-PAGE of extracted gelatin gel showed protein band intensities for α1-chains and 53 kDa but in gels added with higher concentration of transglutaminase, these protein band intensities seemed to disappear.  相似文献   

6.
The optimization of the functionalities of commercial protein ingredients still constitutes a key objective of the food industry. Our aim was therefore to compare the effect of thermal treatments applied in typical industrial conditions on the foaming properties of whey protein isolate (WPI) and egg white proteins (EWP): EWP was pasteurized in dry state from 1 to 5 days and from 60 °C to 80 °C, while WPI was heat-treated between 80 °C and 100 °C under dynamic conditions using a tubular heat exchanger. Typical protein concentrations of the food industry were also used, 2% (w/v) WPI and 10% (w/v) EWP at pH 7, which provided solutions of similar viscosity. Consequently, WPI exhibited a higher foamability than EWP. For WPI, heat treatment induced a slight decrease of overrun when temperature was above 90 °C, i.e. when aggregation reduced too considerably the amount of monomers that played the key role on foam formation; conversely, it increased foamability for EWP due to the lower aggregation degree resulting from dry heating compared to heat-treated WPI solutions. As expected, thermal treatments improved significantly the stability of WPI and EWP foams, but stability always passed through a maximum as a function of the intensity of heat treatment. In both cases, optimum conditions for foam stability that did not impair foamability corresponded to about 20% soluble protein aggregates. A key discrepancy was finally that the dry heat treatment of EWP provided softer foams, despite more rigid than the WPI-based foams, whereas dynamically heat-treated WPI gave firmer foams than native proteins.  相似文献   

7.
Pre-cooked Pacific white shrimp (Litopenaeus vannamei) is an important shrimp product. However melanosis, especially in the cephalothorax including carapace and internal organs, is more likely caused by the remaining polyphenol oxidase (PPO) after pre-cooking. Thus, PPO from carapace and proteases from hepatopancreas of Pacific white shrimp were characterised and the remaining activities of both enzymes were monitored in pre-cooked shrimp during storage at 4 °C. Based on activity staining using L-β-(3,4 dihydroxylphenyl) alanine as a substrate, PPO consisted of two isoforms with apparent molecular weight of 210 and 220 kDa. No difference in activity band was observed when analysed under reducing and non-reducing condition. Proteases from hepatopancreas were able to activate PPO to some degree. For the in vitro study, both enzymes were quite stable when heated at temperature up to 70 °C but the loss in activities increased with increasing heating time (0-120 s). When Pacific white shrimp were pre-cooked to obtain different core temperatures (50-90 °C), different PPO and protease activities were retained. Higher core temperatures were associated with lower PPO and protease activities, but higher cooking loss. When the shrimp were pre-cooked at 80 °C, the residual PPO and protease activities were 3.9% and 5.4%, respectively and cooking yield of 95.6% was obtained. The resulting pre-cooked shrimp possessed lower melanosis score during 7 days of storage at 4 °C. Thus, pre-cooking of shrimp to obtain a core temperature of 80 °C, with a holding time of 30 s, could prevent the severe cooking loss and lower melanosis during subsequent storage.  相似文献   

8.
The effects of three varieties of instant green tea (from China, Japan and Kenya) on the foaming and thermal properties of 1% (w/v) egg albumen and the gelation properties of 5 and 15% (w/v) egg albumen were investigated. All varieties produced similar effects on the foaming and gelation properties of egg albumen, but to different extents depending on the tea constituents. Mixtures of 1% (w/v) egg albumen and 0.25–0.4% (w/v) instant green teas in distilled water showed the greatest foam expansion (800–1140%) and foam stability (97–100%) at 10 min after whipping compared with 1% (w/v) egg albumen alone (226% for foam expansion and 34% for foam stability). Addition of instant green teas at levels above 0.5% (w/v) decreased foam expansion and stability. Small‐deformation rheology of mixtures of 5% (w/v) egg albumen and 1 or 2% (w/v) instant green teas showed an initial increase in elastic modulus (G′) and viscous modulus (G″) followed by a small, broad peak, indicating that the binding of tea constituents (polyphenols) with proteins may be reversible between 20 and 54 °C; this peak was not seen for 5% (w/v) egg albumen on its own. Large‐deformation rheological tests also indicated increased strength of mixed egg albumen/green tea gels with increasing levels of instant green teas. Differential scanning calorimetry thermograms showed that for the same instant green tea a higher concentration decreased the onset and peak (Tm) temperatures and enthalpy change values of all egg albumen protein peaks. Copyright © 2007 Society of Chemical Industry  相似文献   

9.
Chhana (a heat and acid coagulated milk protein mass and an Indian equivalent to cottage cheese) can be used as a raw material for the manufacture of various types of sweets popular all over India. Texture Profile Analysis (TPA), using an Instron Universal Testing Machine, was used to determine the effect of different coagulants on the textural characteristics of chhana. Chhana was made using three different coagulants: citric acid, lactic acid and calcium lactate, at five different concentrations, 0.5, 1, 2, 4 and 8%. Two types of dilution media, distilled water and acid whey, were used. The textural characteristics obtained when aqueous 0.5% citric acid, aqueous 0.5% lactic acid and 4–8% calcium lactate solutions, using acid whey as the solvent, gave similar TPA readings to normal chhana.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号