首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fourteen male rats were trained to discriminate between injections of 2 mg/kg delta-9-tetrahydrocannabinol (delta 9-THC) and vehicle in a 2-lever operant drug-discrimination paradigm. Following training, substitution tests using a cumulative dosing procedure revealed that anandamide (0.5-16 mg/kg ip), the putative endogenous camabinoid receptor ligand, failed to generalize to the discriminative stimulus properties of the training dose of delta 9-THC. However, dose-dependent generalization to the delta 9-THC cue was observed following administration of both CP-55,940 (0.05-0.8 mg/kg ip), a synthetic cannabinoid, and (R)-methanandamide (0.5-8 mg/kg ip), a metabolically stable analog of anandamide. Collectively, these results demonstrate a cannabinoid-specific in vivo effect of an anandamide compound and suggest that the naturally occurring form of anandamide may be metabolized too rapidly to produce a cannabimimetic intercceptive state when administered peripherally.  相似文献   

2.
Fourteen male rats were trained to discriminate between injections of 2 mg/kg delta-9 tetrahydrocannabinol (Δ–9-THC) and vehicle in a 2-lever operant drug-discrimination paradigm. Following training, substitution tests using a cumulative dosing procedure revealed that anandamide (0.5-16 mg/kg ip), the putative endogenous cannabinoid receptor ligand, failed to generalize to the discriminative stimulus properties of the training dose of Δ–9-THC. However, dose-dependent generalization to the Δ–9-THC cue was observed following administration of both CP-55,940 (0.05-0.8 mg/kg ip), a synthetic cannabinoid, and (R)-methanandamide (0.5-8 mg/kg ip), a metabolically stable analog of anandamide. Collectively, these results demonstrate a cannabinoid-specific in vivo effect of an anandamide compound and suggest that the naturally occurring form of anandamide may be metabolized too rapidly to produce a cannabimimetic interoceptive state when administered peripherally. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

3.
Arachidonylethanolamide (anandamide), an endogenous ligand for the cannabinoid receptor, binds competitively to brain cannabinoid receptors and shares many, but not all, of the in vivo effects of delta9-tetrahydrocannabinol. In this study, the cannabinoid effects of anandamide analogs in which the anandamide molecule was altered were assessed in a drug discrimination model. Structural manipulations of the anandamide molecule included saturation of the arachidonyl moiety with fluorination (O-586), substitution for either the ethanolamide moiety (O-612 and O-595) or C2' hydroxyl (O-585), and addition of a methyl group at various positions (O-610, O-680, and O-689). Despite the low binding affinities of the non-methylated compounds (Ki values > 2000 nM), all of the analogs had previously shown cannabinoid activity in mice. In the present study, these analogs were tested in a more pharmacologically specific delta9-tetrahydrocannabinol discrimination procedure in rats. This animal model is predictive of the subjective effects of marijuana intoxication in humans. Whereas delta9-tetrahydrocannabinol and an aminoakylindole fully substituted for the training dose of 3 mg/kg delta9-tetrahydrocannabinol, anandamide and its non-methylated analogs were not cannabimimetic in this procedure. Methylation appeared to increase binding affinity (Ki values < 150 nM) and efficacy; however, the greatest substitution produced by the methylated analogs occurred only at doses that decreased overall rates of responding, suggesting that these analogs are not fully delta9-tetrahydrocannabinol-like. The rapid metabolism of anandamide and some of its analogs undoubtedly contribute to the differences between the pharmacological profiles of the anandamides and classical cannabinoids. These results support the prediction that the subjective effects of anandamide analogs that have been developed thus far would not be cannabimimetic except at high doses.  相似文献   

4.
In this study we employed the neuroblastoma x glioma NG 108-15 cell line as a model for investigating the effects of long-term activation of cannabinoid receptors on delta opioid receptor desensitization, down-regulation and gene expression. Exposure of NG 108-15 cells to (-)-delta9-tetrahydrocannabinol (delta9-THC) reduced opioid receptor binding, evaluated in intact cells, by approximately 40-45% in cells exposed for 24 h to 50 and 100 nM delta9-THC and by approximately 25% in cells exposed to 10 nM delta9-THC. Lower doses of delta9-THC (0.1 and 1 nM) or a shorter exposure time to the cannabinoid (6 h) were not effective. Down-regulation of 6 opioid receptors was not observed in cells exposed for 24 h to pertussis toxin (PTX) and then treated for 24 h with 100 nM delta9-THC. In cells that were exposed for 24 h to the cannabinoid, the ability of delta9-THC and of the delta opioid receptor agonist [D-Ser2, Leu5, Thr6]enkephalin to inhibit forskolin-stimulated cAMP accumulation was significantly attenuated. Prolonged exposure of NG 108-15 cells to 100 nM delta9-THC produced a significant elevation of steady-state levels of delta opioid receptor mRNA. This effect was not observed in cells pretreated with PTX. The selective cannabinoid receptor antagonist SR 141716A blocked the effects elicited by delta9-THC on delta opioid receptor desensitization, down-regulation and gene expression; thus indicating that these are mediated via activation of cannabinoid receptors. These data demonstrate the existence, in NG 108-15 cells, of a complex cross-talk between the cannabinoid and opioid receptors on prolonged exposure to delta9-THC triggered by changes in signaling through Gi and/or G0-coupled receptors.  相似文献   

5.
Several reports have demonstrated that (-)-delta9-tetrahydrocannabinol (delta9-THC) and arachidonylethanolamide [anandamide (AEA)] were able to inhibit prolactin (PRL) secretion from the anterior pituitary gland in male rodents, whereas ovarian phase-dependent effects were seen in females. However, in most of these studies, the analysis of PRL levels was performed at times longer than 30 min after cannabinoid administration. In the present study, we examined the time course of the effects of three different cannabimimetics, delta9-THC, AEA, and AM356 (R-methanandamide), a more stable analog of AEA, on PRL and gonadotrophin secretion in male Wistar rats. In addition, we characterized the presence of cannabinoid receptors in hypothalamic structures related to neuroendocrine control and studied their potential involvement in the effects of cannabimimetics. We found that the three compounds decreased plasma luteinizing hormone (LH) levels, although only the effects of delta9-THC were statistically significant. The inhibitory effect was already apparent at 40 min after administration, but only in the case of delta9-THC did it persist up to 180 min after administration. No significant changes were seen in plasma follicle-stimulating hormone (FSH) levels after the administration of any of the three different cannabimimetics at any of the four times analyzed. Both AEA and AM356 produced a significant decrease in plasma PRL levels, which appeared at 20 min after administration and persisted up to 60 min, waning after this time. Interestingly, the time course of the effect of delta9-THC resembled that of AEA and AM356 only during the later part of the response, because delta9-THC produced a marked increase in plasma PRL levels at 20 min, no changes at 40 min and a decrease from 60 min up to 180 min. In additional experiments, we tried to elucidate which of these two phases observed after delta9-THC administration was mediated by the activation of cannabinoid receptors. These receptors are present in hypothalamic structures related to neuroendocrine control, with the highest densities in the arcuate nucleus (dorsal area) and the medial preoptic area, and the lowest in the lateral hypothalamic area, although none of these regions exhibited high densities for this receptor as compared with classical regions containing cannabinoid receptors, such as the basal ganglia. The activation of these receptors by delta9-THC seems to be involved in the inhibitory phase of the effect of this cannabinoid on PRL release, but not in the early stimulation; when these receptors were blocked with a specific antagonist, SR141716, the stimulation by delta9-THC was still observed, but the late inhibition was abolished. In summary, AEA and AM356 markedly decreased PRL release and slightly decreased LH secretion, with no changes on FSH release. delta9-THC also produced a marked inhibition of LH secretion, but its effects on PRL were biphasic with an early stimulation not mediated by the activation of cannabinoid receptors, followed by a late and cannabinoid receptor-mediated inhibition. Their site of action may well be the hypothalamic structures related to neuroendocrine control, which contain a small, but probably very active, population of cannabinoid receptors.  相似文献   

6.
Arachidonylethanolamide (anandamide), a candidate endogenous cannabinoid ligand, has recently been isolated from porcine brain and displayed cannabinoid-like binding activity to synaptosomal membrane preparations and mimicked cannabinoid-induced inhibition of the twitch response in isolated murine vas deferens. In this study, anandamide and several congeners were evaluated as cannabinoid agonists by examining their ability to bind to the cloned cannabinoid receptor, inhibit forskolin-stimulated cAMP accumulation, inhibit N-type calcium channels, and stimulate one or more functional second messenger responses. Synthetic anandamide, and all but one congener, competed for [3H]CP55,940 binding to plasma membranes prepared from L cells expressing the rat cannabinoid receptor. The ability of anandamide to activate receptor-mediated signal transduction was evaluated in Chinese hamster ovary (CHO) cells expressing the human cannabinoid receptor (HCR, termed CHO-HCR cells) and compared to control CHO cells expressing the muscarinic m5 receptor (CHOm5 cells). Anandamide inhibited forskolin-stimulated cAMP accumulation in CHO-HCR cells, but not in CHOm5 cells, and this response was blocked with pertussis toxin. N-type calcium channels were inhibited by anandamide and several active congeners in N18 neuroblastoma cells. Anandamide stimulated arachidonic acid and intracellular calcium release in both CHOm5 and CHO-HCR cells and had no effect on the release of inositol phosphates or phosphatidylethanol, generated after activation of phospholipase C and D, respectively. Anandamide appears to exhibit the essential criteria required to be classified as a cannabinoid/anandamide receptor agonist and shares similar nonreceptor effects on arachidonic acid and intracellular calcium release as other cannabinoid agonists.  相似文献   

7.
Anandamide, an endogenous arachidonic acid derivative that is released from neurons and activates cannabinoid receptors, may act as a transcellular cannabimimetic messenger in the central nervous system. The biological actions of anandamide and the identity of its target cells are, however, still poorly documented. Here we show that anandamide is a potent inhibitor of gap-junction conductance and dye permeability in striatal astrocytes. This inhibitory effect is specific for anandamide as compared to co-released congeners or structural analogues, is sensitive to pertussis toxin and to protein-alkylating agents, and is neither mimicked by cannabinoid-receptor agonists nor prevented by a cannabinoid-receptor antagonist. Glutamate released from neurons evokes calcium waves in astrocytes that propagate via gap junctions, and may, in turn, activate neurons distant from their initiation sites in astrocytes. We find that anandamide blocks the propagation of astrocyte calcium waves generated by either mechanical stimulation or local glutamate application. Thus, by regulating gap-junction permeability, anandamide may control intercellular communication in astrocytes and therefore neuron-glial interactions.  相似文献   

8.
Anandamide is the newly discovered endogenous cannabinoid ligand that binds to brain cannabinoid receptors and shares most, but not all, of the pharmacological properties of delta 9-THC. Therefore, this study was undertaken to determine whether its interaction with the CB1 receptor in brain was identical to that of delta 9-THC. Anandamide depressed spontaneous activity and produced hypothermia, antinociception and immobility in mice after i.v. administration. However, none of these effects was blocked by pretreatment with the selective CB1 antagonist, SR 141716A. However, the metabolically stable analog 2-methyl-2'-fluoroethylanandamide produced reductions in motor activity and antinociception in mice, effects that were blocked by the antagonist. To determine whether anandamide's receptor binding mimicked that of other cannabinoids, an autoradiographic comparison of anandamide, SR 141716A and CP 55,940 competition for [3H]CP55,940 binding was conducted throughout rat brain. The receptor affinities for all three compounds did not change according to brain area. As expected, Bmax values differed dramatically among differ brain areas. However, the Bmax values for each brain area were similar regardless of the compound used for displacement. These data suggest that anandamide, SR 141716A and CP 55,940 compete for the same cannabinoid receptor throughout brain despite SR 141716A's failure to block anandamide's pharmacological effects. Although there is no question that anandamide binds to the cannabinoid receptor, failure of SR 141716A to block its pharmacological effects in mice poses a dilemma. The results presented herein raise the possibility that anandamide may not be producing all of its effects by a direct interaction with the CB1 receptor.  相似文献   

9.
Previous studies indicate that the CB1 cannabinoid receptor antagonist, N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-met hyl-1H-pyrazole-3-carboxamide HCl (SR141716A), inhibits the anandamide- and delta9-tetrahydrocannabinol- (THC) induced hypotension and bradycardia in anesthetized rats with a potency similar to that observed for SR141716A antagonism of THC-induced neurobehavioral effects. To further test the role of CB1 receptors in the cardiovascular effects of cannabinoids, we examined two additional criteria for receptor-specific interactions: the rank order of potency of agonists and stereoselectivity. A series of cannabinoid analogs including the enantiomeric pair (-)-11-OH-delta9-THC dimethylheptyl (+)-11-OH-delta9-THC dimethylheptyl were evaluated for their effects on arterial blood pressure and heart rate in urethane anesthetized rats. Six analogs elicited pronounced and long lasting hypotension and bradycardia that were blocked by 3 mg/kg of SR141716A. The rank order of potency was (-)-11-OH-delta9-THC dimethylheptyl > or = (-)-3-[2-hydroxy-4-(1,1-dimethyl-heptyl)phenyl]-4-[3-hydroxy-propyl]c yclohexan-1-ol > (-)-3-[2-hydroxy-4-(1,1-dimethyl-heptyl)phenyl]-4-[3-hydroxy-propyl]c yclohexan-1-ol > THC > anandamide > or = (-)-3-[2-hydroxy-4-(1,1-dimethyl-heptyl)phenyl]-4-[3-hydroxy-propyl]c yclohexan-1-ol, which correlated well with CB1 receptor affinity or analgesic potency (r = 0.96-0.99). There was no hypotension or bradycardia after palmitoylethanolamine or (+)-11-OH-delta9-THC dimethylheptyl. An initial pressor response was also observed with THC and anandamide, which was not antagonized by SR141716A. We conclude that the similar rank orders of potency, stereoselectivity and sensitivity to blockade by SR141716A indicate the involvement of CB1-like receptors in the hypotensive and bradycardic actions of cannabinoids, whereas the mechanism of the pressor effect of THC and anandamide remains unclear.  相似文献   

10.
Anandamide (arachidonylethanolamide) is an endogenous ligand for cannabinoid receptors, and exerts various cannabimimetic activities. Since cannabinoids and anandamide were pharmacologically active with the eye, we examined metabolism of anandamide in a variety of porcine ocular tissues. In the presence of ethanolamine, [14C]arachidonic acid was converted to [14C]anandamide by a homogenate of retina, choroid, iris, optic nerve and lacrimal gland with a specific enzyme activity of 1.9-4.2 nmol min-1 mg-1 protein at 37 degrees C. On the other hand, [14C]anandamide was hydrolysed to [14C]arachidonic acid by a homogenate of each tissue with a specific enzyme activity of 1.2-3.5 nmol min-1 mg-1 protein. Thus, both activities of anandamide synthase and hydrolase were found in these ocular tissues. As for the subcellular distribution, the two enzyme activities were mostly recovered in particulate fractions rather than the cytosol. With the retina microsome palmitic acid was converted to its ethanolamide at a lower rate than arachidonic acid, and palmitoylethanolamide was less active than anandamide as a substrate for the hydrolase.  相似文献   

11.
Astrocytes are an important cell population in the CNS, involved in cytokine homeostasis and participating in a variety of important physiological and pathological processes. In the present study we showed that primary cultures of neonatal mouse cortical astrocytes stimulated with lipopolysaccharide (Balb/c mice strain, LPS: 1 microgram/ml, 18 h) or Theiler's virus, TMEV (SJL/J mice strain, TMEV: 10(5) PFU/well, 24 h) released an increased amount of nitrites (NO2-) and tumour necrosis factor-alpha (TNF-alpha) into the culture medium. Exogenous cannabinoids are known to modulate the function of immune cells. Anandamide, an endogenous ligand for the cannabinoid receptor, blocked the release of NO2- and TNF-alpha induced by LPS in a dose-dependent manner. In TMEV-stimulated astrocytes anandamide also suppressed, in a dose-related manner, the stimulatory effects of TMEV on both NO2- and TNF-alpha. It is suggested that anandamide exerts an immunoregulatory role in the CNS. These results could have important implications in the modulation of immunological and inflammatory processes by cannabinoid agents.  相似文献   

12.
Delta9-tetrahydrocannabinol (delta9-THC) elicits antinociception in rodents through the central CB1 cannabinoid receptor subtype. In addition. Delta9-THC stimulates the release of dynorphin-related peptides leading to kappa-opioid spinal antinociception. In this work we describe the effect of a mixture of thiorphan (a neutral endopeptidase EC3.4.24.11 inhibitor) and bestatin (an aminopeptidase inhibitor), administered i.c.v., on the antinociceptive effect of peripherally administered delta9-THC in mice. As in the case of morphine or DAMGO ([D-Ala2.N-Me-Phe4,Gly-ol]enkephalin), a mu-selective opioid receptor agonist, the mixture of enkephalin-degrading enzyme inhibitors also enhanced the antinociceptive effect of delta9-THC. This effect was blocked by the CB1 cannabinoid receptor antagonist, SR-141,716-A, as well as by naloxone. The kappa-opioid receptor antagonist nor-binaltorphimine, administered i.t., also antagonized the effect of this combination. Similar results were obtained with the mu-opioid receptor antagonist beta-funaltrexamine after i.c.v. administration. These results demonstrate the involvement of both mu-opioid supraspinal and kappa-opioid spinal receptors in the interaction of both opioid and cannabinoid systems regulating nociception in mice.  相似文献   

13.
(Dimethylheptyl)anandamide [(16,16-dimethyldocosa-cis-5,8,11,14-tetraenoyl)ethanolamine ] (17a) and its amide analogs were synthesized by Wittig coupling of a ylide derived from a fragment of arachidonic acid. These amides were compared to the endogenous cannabinoid receptor ligand arachidonylethanolamide (anandamide, 2a) and its amide analogs in pharmacological assays for potential enhancement of cannabimimetic activities. The receptor affinity to rat brain membranes of the dimethylheptyl (DMH) analogs increased by an order of magnitude in most comparisons to the corresponding anandamides in displacement assays versus the cannabinoid agonist [3H]CP 55,940 or antagonist [3H]SR141716A, for which rank order differences in affinity were observed. An order of magnitude enhancement of potency with comparable or higher efficacy in behavioral assays in the mouse tetrad of tests of cannabinoid activity was observed in 17a versus 2a. In contrast, no enhancement in potency for the pentyl to DMH side chain exchange was seen in the mouse vas deferens assay. The data indicate a structural equivalence between classical plant cannabinoids and 2a as well as different receptor-ligand interactions that characterize multiple receptor sites or binding modes.  相似文献   

14.
In vitro binding characteristics of delta8-tetrahydrocannabinol (delta8-THC) and its metabolites, 11-hydroxy-delta8-THC (11-OH-delta8-THC) and 11-oxo-delta8-THC, as well as an inactive metabolite, delta8-THC-11-oic acid, as a cannabinoid receptor site from bovine cortex were examined using the specific agonist [3H]CP-55940. 11-OH-delta8-THC and 11-oxo-delta8-THC strongly inhibited the specific binding of [3H]CP-55940. The Ki values of 11-OH-delta8-THC and 11-oxo-delta8-THC for the specific binding of [3H]CP-55940 were 52 and 143 nM, respectively, whereas that of delta8-THC-11-oic acid was 917 nM. Scatchard plot analyses indicated that 11-OH-delta8-THC and 11-oxo-delta8-THC caused a significant increase in the apparent KD value without changing the apparent Bmax. These results reveal that active metabolites of delta8-THC also competitively bind to the cannabinoid receptor as agonists.  相似文献   

15.
delta 8-Tetrahydrocannabinol (delta 8-THC) is a naturally occurring cannabinoid with a characteristic pharmacological profile of in vivo effects. Previous studies have shown that modification of the structure of delta 8-THC by inclusion of a nitrogen-containing functional group alters this profile and may alkylate the cannabinoid receptor, similar to the manner in which beta-funaltrexamine (beta-FNA) alkylates the micro-opioid receptor. Two novel analogs of delta 8-THC were synthesized: a nitrogen mustard analog with a dimethylheptyl side chain (NM-delta 8-THC) and a cyano analog with a dimethylpentyl side chain (CY-delta 8-THC). Both analogs showed high affinity for brain cannabinoid receptors and when administered acutely, produced characteristic delta 9-THC-like effects in mice, including locomotor suppression, hypothermia, antinociception and catalepsy. CY-delta 8-THC shared discriminative stimulus effects with CP 55,940; for NM-delta 8-THC, these effects also occurred, but were delayed. Although both compounds attenuated the effects of delta 9-THC in the mouse behavioral tests, evaluation of potential antagonist effects of these compounds was complicated by the fact that two injections of delta 9-THC produced similar results, suggesting that acute tolerance or desensitization might account for the observations. NM-delta 8-THC, but not CY-delta 8-THC, attenuated the discriminative stimulus effects of CP 55,940 in rats several days following injection. Hence, addition of a nitrogen-containing functional group to a traditional cannabinoid structure does not eliminate agonist effects and may produce delayed attenuation of cannabinoid-induced pharmacological effects.  相似文献   

16.
Delta9-tetrahydrocannabinol (delta9-THC), cannabinol and cannabidiol are three important natural cannabinoids from the Marijuana plant (Cannabis sativa). Using [35S]GTP-gamma-S binding on rat cerebellar homogenate as an index of cannabinoid receptor activation we show that: delta9-THC does not induce the maximal effect obtained by classical cannabinoid receptor agonists such as CP55940. Moreover at high concentration delta9-THC exhibits antagonist properties. Cannabinol is a weak agonist on rat cerebellar cannabinoid receptors and cannabidiol behaves as an antagonist acting in the micromolar range.  相似文献   

17.
Anandamide, an endogenous cannabinoid ligand, binds to CB1 cannabinoid receptors in the brain and mimics the neurobehavioural actions of marijuana. Cannabinoids and anandamide also elicit hypotension mediated by peripheral CB1 receptors. Here we report that a selective CB1 receptor antagonist, SR141716A, elicits an increase in blood pressure in rats subjected to haemorrhagic shock, whereas similar treatment of normotensive rats or intracerebroventricular administration of the antagonist during shock do not affect blood pressure. Blood from haemorrhaged rats causes hypotension in normal rats, which can be prevented by SR141716A but not by inhibition of nitric oxide synthase in the recipient. Macrophages and platelets from haemorrhaged rats elicit CB1 receptor-mediated hypotension in normotensive recipients, and incorporate arachidonic acid or ethanolamine into a product that co-elutes with anandamide on reverse-phase high-performance liquid chromatography. Also, macrophages from control rats stimulated with ionomycin or bacterial phospholipase D produce anandamide, as identified by gas chromatography and mass spectrometry. These findings indicate that activation of peripheral CB1 cannabinoid receptors contributes to haemorrhagic hypotension, and anandamide produced by macrophages may be a mediator of this effect.  相似文献   

18.
CB1 cannabinoid receptors are located in hypothalamic nuclei and their activation alters several hypothalamic neurotransmitters resulting in, among other things, decreased prolactin (PRL) and luteinizing hormone (LH) secretion from the anterior pituitary gland. In the present study, we addressed two related objectives to further explore this complex regulation. First, we examined whether changes in gamma-aminobutyric acid (GABA) and/or dopamine (DA) inputs in the medial basal hypothalamus might occur in parallel to the effects resulting from the activation of CB1 receptors on PRL and gonadotrophin secretion in male rats. Thus, the acute administration of (-)-delta9-tetrahydrocannnabinol (delta9-THC) produced, as expected, a marked decrease in plasma PRL and LH levels, with no changes in follicle-stimulating hormone (FSH) levels. This was paralleled by an increase in the contents of GABA, but not of DA, in the medial basal hypothalamus and, to a lesser extent, in the anterior pituitary gland. The co-administration of delta9-THC and SR141716, a specific antagonist for CB1 receptors, attenuated both PRL and LH decrease and GABA increase, thus asserting the involvement of the activation of CB1 receptors in these effects. As a second objective, we tested whether the prolonged activation of these receptors might induce tolerance with regard to the decrease in PRL and LH release, and whether this potential tolerance might be related to changes in CB1-receptor binding and/or mRNA expression. The chronic administration of R-methanandamide (AM356), a more stable analog of anandamide, the putative endogenous cannabinoid ligand, produced a marked decrease in plasma PRL and LH levels, with no changes in FSH. The decreases were of similar magnitude to those caused by a single injection of this cannabimimetic ligand, thus suggesting the absence of tolerance. In parallel, the analysis of CB1-receptor binding and mRNA expression in several hypothalamic structures proved that the acute or chronic administration of AM356 did not affect either the binding or the synthesis of these receptors. In summary, the activation of CB1 receptors in hypothalamic nuclei produced the expected decrease in PRL and LH secretion, an effect which might be related to an increase in GABAergic activity in the hypothalamus-anterior pituitary axis. The prolonged activation of these receptors for five days did not elicit tolerance in terms of an attenuation in the magnitude of the decrease in PRL and LH, and, accordingly, did not alter CB1-receptor binding and mRNA levels in the hypothalamic nuclei examined.  相似文献   

19.
Anandamide and 2-arachidonoylglycerol (2-AG) are two endogenous ligands for the cannabinoid receptors, and their cannabimimetic activities are lost when they are hydrolyzed enzymatically. Cytosol and particulate fractions of porcine brain exhibited a high 2-AG hydrolyzing activity of 100 nmol/min/mg protein. Most of the activity could be attributed to a monoacylglycerol lipase-like enzyme that did not hydrolyze anandamide. It was separated by hydroxyapatite chromatography from anandamide amidohydrolase, which is also capable of hydrolyzing 2-AG as well as anandamide. Thus, porcine brain has at least two enzymes capable of hydrolyzing 2-AG. The 2-AG hydrolase activities of both the cytosolic and particulate enzymes were irreversibly and time-dependently inhibited by methyl arachidonyl fluorophosphonate with IC50 values as low as 2-3 nM.  相似文献   

20.
Fatty acid amide hydrolase (FAAH) catalyzes the hydrolysis of bioactive fatty acid amides and esters such as the endogenous cannabinoid receptor ligands, anandamide (N-arachidonoyl-ethanolamine) and 2-arachidonoylglycerol, and the putative sleep inducing factor cis-9-octadecenoamide (oleamide). Most FAAH blockers developed to date also inhibit cytosolic phospholipase A2 (cPLA2) and/or bind to the CB1 cannabinoid receptor subtype. Here we report the finding of four novel FAAH inhibitors, two of which, malhamensilipin A and grenadadiene, were screened out of a series of thirty-two different algal natural products, and two others, arachidonoylethylene glycol (AEG) and arachidonoyl-serotonin (AA-5-HT) were selected out of five artificially functionalized polyunsaturated fatty acids. When using FAAH preparations from mouse neuroblastoma N18TG2 cells and [14C]anandamide as a substrate, the IC50s for these compounds ranged from 12.0 to 26 microM, the most active compound being AA-5-HT. This substance was also active on FAAH from rat basophilic leukaemia (RBL-2H3) cells (IC50 = 5.6 microM), and inhibited [14C]anandamide hydrolysis by both N18TG2 and RBL-2H3 intact cells without affecting [14C]anandamide uptake. While AEG behaved as a competitive inhibitor and was hydrolyzed to arachidonic acid (AA) by FAAH preparations, AA-5-HT was resistant to FAAH-catalyzed hydrolysis and behaved as a tight-binding, albeit non-covalent, mixed inhibitor. AA-5-HT did not interfere with cPLA2-mediated, ionomycin or antigen-induced release of [3H]AA from RBL-2H3 cells, nor with cPLA2 activity in cell-free experiments. Finally, AA-5-HT did not activate CB1 cannabinoid receptors since it acted as a very weak ligand in in vitro binding assays, and, at 10-15 mg/kg body weight, it was not active in the 'open field', 'hot plate' and rectal hypothermia tests carried out in mice. Conversely AEG behaved as a cannabimimetic substance in these tests as well as in the 'ring' immobility test where AA-5-HT was also active. AA-5-HT is the first FAAH inhibitor reported to date which is inactive both against cPLA2 and at CB1 receptors, whereas AEG represents a new type of cannabinoid receptor agonist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号