首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
磁性微球固定化酶工艺研究进展   总被引:1,自引:0,他引:1  
磁性微球固定化酶就是利用磁性微体作为载体进行酶的固定化,由于其具有环保、酶重复利用效果好和降低生产成本等优点,近几年已经成为研究的焦点。本文重点对磁性微球固定化酶制备工艺的研究现状、应用及发展前景进行阐述,为同行们今后开展研究提供参考。  相似文献   

2.
磁性高分子微球作为一种高分子材料,已在生物学、细胞学、生物医学、药学和环境保护等领域得到了广泛应用。通过介绍磁性高分子微球的结构类型、特点、制备及在食品工业中的应用,使读者对磁性高分子微球作用有进一步的了解。  相似文献   

3.
磁性高分子微球是一种新型功能微球,由磁性颗粒和高分子材料复合而成。近年来,磁性高分子微球在许多领域得到了广泛的应用,尤其在生物技术和生物医学两方面的应用最为突出。文章结合国内外相关研究实例,对磁性高分子微球的制备及其应用的最新进展进行综述。  相似文献   

4.
变性淀粉是天然增稠剂中发展活跃的品种,其中磁性淀粉微球是一类性能优良的磁变性淀粉,它以淀粉类物质为载体,包埋金属或金属氧化物,或者在磁流体上共价吸附或聚合淀粉类物质形成的具有磁性的功能高分子材料.以金属或金属氧化物为磁变性淀粉、多糖的核时,磁核通常是具有尖晶石铁氧体结构的过渡金属氧化物的晶体或结晶簇合物,如四氧化三铁、r-Fe2O3或过渡金属与铁的氧化物等.目前在固定化酶中使用磁核以四氧化三铁最为常见.且当磁性粒子晶体直径小于30nm时,则具有超顺磁性.磁性淀粉微球的直径一般在微米级或纳米级,因此其具有超顺磁性,在外加磁场的作用下快速分离,容易被磁力控制、定向、定位移动和测定,此外,还具有表面效应、体积效应、量子尺寸效应和功能基特性等纳米材料微粒子的特性,通过磁性淀粉微球表面的高分子壳层,可在其表面可引入一些功能基团(如-OH,-COOH,-NH2等),通过这些功能基可将一些生物活性物质(如核酸、酶等)修饰于磁性微粒表面,也可以偶联特异性生物大分子(如特异性配体、抗体、抗原等),作为一种新的变性淀粉材料,磁性淀粉材料不但具备无毒、材料来源广、价格低廉、制备方便、可生物降解等优点,而且还具有良好的生物相容性,因此其在磁性材料、生物工程和生物医药等领域展现了广泛的应用前景.文章着重介绍了磁性淀粉微球的性能及其在在固定化酶中使用等领域的应用前景.  相似文献   

5.
利用反相悬浮交联法制备壳聚糖微球,然后采用化学共转化法制备了磁性壳聚糖微球(magnetic chitosan microspheres,M-CS),并对胃蛋白酶进行固定化研究。结果表明,制备的M-CS呈规则圆球形,有很好的磁响应性,并且在弱酸弱碱环境下能稳定保存。磁性壳聚糖微球对胃蛋白酶的吸附性实验表明,磁性壳聚糖微球能吸附胃蛋白酶,可是吸附胃蛋白酶的量受到载体与酶比例、溶液的离子浓度、溶液的pH值影响很大。胃蛋白酶动力学性质研究表明,相对于游离的胃蛋白酶,固定化后的酶的最适温度有所升高,最适温度在60℃、酸碱稳定性略有改善,最适pH4.0,故固定化后的酶的热稳定性和酸碱稳定性都得到明显改善。  相似文献   

6.
磁性高分子微球及其在食品工业中的应用   总被引:7,自引:0,他引:7  
磁性高分子微球作为一种高分子材料,已在生物学、细胞学、生物医学、药学和环境保护等领域得到了广泛应用。通过介绍磁性高分子微球的结构类型、特点、制备及在食品工业中的应用,使读者对磁性高分子微球作用有进一步的了解。  相似文献   

7.
磁性壳聚糖复合微球固定化葡萄糖异构酶制备及性能研究   总被引:1,自引:0,他引:1  
通过化学共沉淀法合成纳米级Fe3O4粒子,并将其作为磁核,采用乳化交联法制备磁性壳聚糖复合微球,用SEM、FT-IR及激光粒度仪对微球结构进行表征。以磁性复合微球为载体,对葡萄糖异构酶进行固定化,并对固定化酶的参数、性质以及动力学参数进行研究。试验结果表明:磁性复合微球呈圆球形,具有较好的磁性。在加酶量12 mg/mL、戊二醛体积分数2%、交联时间2 h、振荡时间6 h条件下可以得到较佳的固定化效果,其酶活回收率达84.7%。对固定化酶性质的测定结果显示,最适Mg2+浓度0.01 mol/L,最适Co2+浓度0.003 mol/L,最适pH 7.2,最适温度75℃。通过计算其半衰期为40 d。对动力学参数的测定结果是:固定化酶的米氏常数为9.720,游离酶的米氏常数为8.190。  相似文献   

8.
通过悬浮聚合法制备了含环氧基团的聚合物载体高分子磁性多孔微球(GHD),用TEM、 SEM和Micromeritics ASAP 2010等对聚合物载体进行了表征。考察了载体中交联剂含量、固定化时间、给酶量等因素对固定化脂肪酶催化活性的影响。结果表明,Fe3O4纳米粒子粒径20 nm,分布均匀,磁性多孔微球粒径从几十微米到一百多微米,粒子大小大体呈正态分布且分布较窄,平均粒径为110 μm,直径在区间80μm~150μm范围内的粒子占90%以上。微球表面呈皱褶态且呈现多孔性,孔径从几个纳米到几十纳米,为闭孔,且孔间互相贯穿。固定化酶最适条件为给酶量125 mg/g,固定化时间7 h,此时酶的吸附量为118 .5mg/g,比酶活7.56×105 U/g,酶的活力回收率0.95。以GHD为载体制备的固定化脂肪酶最佳反应温度从37 ℃上升到42 ℃,最适反应pH从7.2提高到7.5,固定化后酶对温度和pH的敏感性降低,重复使用12次,固定化酶的活力都能保持在92 %以上。  相似文献   

9.
磁性聚乙烯醇微球固定化α-淀粉酶的研究   总被引:5,自引:1,他引:5  
磁性聚乙烯醇微球为载体,采用戊二醛交联法固定化α-淀粉酶,并对固定化酶的理化性质等进行了研究。结果表明,磁性固定化α-淀粉酶的总活力、蛋白载量、比活、活性回收率分别为1107.89U/g微球、125.36mg/g微球、8.84U/mg蛋白质和37.96%;固定化α-淀粉酶的反应最适温度和最适pH分别为110℃和7.0;固定化α-淀粉酶对金属离子Mg2+、Fe2+、Zn2+和Cu2+的抑制作用的忍耐性比自由酶的明显提高;α-淀粉酶被固定化后其热稳定性、操作稳定性、pH稳定性均比自由酶的明显提高。固定化α-淀粉酶在4℃,pH7.0的缓冲液中保存30d,其活力仍保持最初活力的91.6%,这比其自由酶的高12.3%。  相似文献   

10.
本文利用化学共沉淀法制备Fe_3O_4磁性颗粒,并以此为磁核通过乳化交联法制备磁性壳聚糖微球,以环氧氯丙烷对微球表面进行活化,用于黄嘌呤氧化酶的固定化研究。以微球表面的环氧基密度为活化指标,确定了活化过程的最适工艺条件:环氧氯丙烷体积分数为40%,Na BH4浓度为0.60 g/L,NaOH浓度为1.20 mol/L。对微球进行结构表征,结果表明:壳聚糖成功包裹了Fe_3O_4磁性粒子,且已活化微球的表面具有环氧基活性基团;Fe_3O_4磁性粒子、未活化和已活化磁性壳聚糖微球的中径分别为2.16、20.30和24.69μm。活化结束后,将黄嘌呤氧化酶固定在磁性微球上。以酶活为指标,确定最适固定化工艺为:时间1 h,温度30℃,pH8.0。对固定化黄嘌呤氧化酶的酶学性质研究,结果表明:酶的最适作用温度为48℃,最适作用pH为8.5,酶具有良好的热稳定性、pH稳定性及操作稳定性。  相似文献   

11.
以甘露低聚糖(MOS)和Fe3O4为原料制备甘露低聚糖磁性微球。以磁性微球的平均粒径和磁响应性为考察指标,通过单因素实验,考察了甘露低聚糖量、交联时间、交联温度和环氧氯丙烷(ECH)的量对产物的影响,运用红外光谱(IR)和扫描电镜(SEM)对产物进行了表征。最后通过正交实验确定最佳工艺条件为:甘露低聚糖浓度为0.01g/mL,交联时间为60min,交联温度为60℃,环氧氯丙烷的用量为8mL。  相似文献   

12.
通过化学共沉淀法合成纳米Fe_3O_4粒子,再以Fe_3O_4为磁核采用乳化交联法制备可固定果胶酶的载体——磁性壳聚糖复合微球。通过TEM、SEM、FT-IR等对微球的粒径、形貌、结构、粒径分布和磁响应性进行了表征。结果表明:制得的磁性壳聚糖微球的粒径在50nm左右,分布较窄,且呈规则的球形,红外光谱测定微球的特征官能团结构,表明已包覆了Fe_3O_4粒子;分光光度法表明磁性微球具有很强的磁响应性。  相似文献   

13.
用于脂肪酶固定化的新型超顺磁性微球的合成、表征   总被引:1,自引:0,他引:1  
应用悬浮聚合技术合成了以油酸稳定化纳米磁粒子为磁核的聚乙酸乙烯酯-二乙烯苯疏水磁性微球。利用透射电子显微镜(TEM)对磁粒子进行表征的结果显示磁粒子的平均粒径为10.09nm,最大粒径为18.41nm。利用扫描电子显微镜(SEM)和粒径分布仪对测定了微球有关参数和表面特征。振动探针式磁强计(VSM)的测定结果和拟合曲线良好的一致性表明微球的磁学特性可以用Langevin方程来描述。所有这一切都证明合成微球具有超顺磁性。对微球固定化脂肪酶的研究结果表明,固定化脂肪酶都具有很强的磁响应性和良好的分离效率,微球固定化酶既具有较大的活性负载量(最高可达6750IU);又具有较高的活性保持率。固定于微球上的脂肪酶在催化橄榄油水解时活性的改善说明发生了界面活化作用。对温度、pH对固定化酶活性的影响以及其它相关的研究还表明固定化酶具有良好的热稳定性和持续重复使用性。  相似文献   

14.
以甲壳素为原料制备可回收型抗菌材料,研究其抗菌效果,提高甲壳素在食品抑菌保藏等领域的应用。通过溶胶-凝胶、原位合成两步法制备银-磁性甲壳素微球,以大肠杆菌和金黄色葡萄球菌为对象,对其基本特性及抗菌性能进行表征评价。结果表明,材料呈三维多孔纳米纤维状球形,磁珠与纳米银嵌于纤维结构之中,纳米银能够快速、持续释放,对2种试验菌可通过破坏细菌结构完整性实现浓度相关性抗菌效果。  相似文献   

15.
磺胺磁性分子印迹聚合物微球的制备及特性研究   总被引:1,自引:1,他引:0  
Fe3O4磁性微球是近年发展起来并已广泛应用于生物医学等领域的一种新型多功能材料。本文利用分子印迹技术,制备用于快速检测的磺胺分子磁性印迹高分子聚合材料。在磁性粒子表面进行分子印迹合成的磁性分子印迹聚合物核壳微球(MMIPMs),兼具良好的超顺磁性和高选择吸附性两大优点,具有广阔的应用前景。  相似文献   

16.
为探寻大豆异黄酮类物质的富集分离的新方法和新思路,选用染料木苷和大豆苷含量总和为89.2%的大豆异黄酮为模板,采用沉淀聚合法,以4-乙烯基吡啶(4-VP)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,偶氮二异丁腈(AIBN)为引发剂,成功制备了分子印迹聚合物微球,并对微球进行了吸附静态学、吸附动力学、类特异选择性和结构表征研究。通过紫外光谱法研究了模板分子与功能单体的相互作用,结果显示4-VP和模板分子作用强烈,模板分子和4-VP最佳摩尔质量比为1:6。静态吸附实验表明印迹聚合物(MIP)与非印迹聚合物(NIP)相比,MIP对模板分子具有明显的特异性吸附。吸附动力学实验表明聚合物微球在5h内对模板分子达到饱和吸附。类特异选择性实验表明MIP对多种大豆异黄酮类单体组分具有明显的类特异性吸附,特异吸附量高。此印迹聚合物微球有望在大豆苷异黄酮富集、分离、检测方面得到广泛的研究和应用。  相似文献   

17.
磁性壳聚糖微球固定化脂肪酶研究   总被引:1,自引:0,他引:1  
以磁性壳聚糖微球为载体,通过戊二醛交联进行脂肪酶固定化,对影响脂肪酶固定化各种因素进行考察,确定最佳条件,并比较游离酶与固定化酶pH和热稳定性。结果表明,固定化适宜条件为:脂肪酶加入量5.0 mg/100 mg载体、温度40℃、时间5 h、pH 8.04、戊二醛浓度10%、最高固载率可达90.56%,酶活4034 U/g载体;与游离酶相比,固定化酶pH和热稳定性都有较宽适用范围。  相似文献   

18.
以Fe_3O_4纳米粉末作为磁性材料,以海藻酸钠、壳聚糖作为微胶囊制备材料,以大肠杆菌为细胞模型,以CaCl_2为交联剂,采用脉冲电场微球成型工艺制备载细胞磁性微胶囊。以微球粒径为检测指标,正交设计考察显著影响因素及影响规律。采用振动磁强计测定徽囊的饱和磁化强度。实验结果表明,海藻酸钠溶液浓度是影响载磁微球粒径的显著因素。在Fe_3O_4浓度为1 mg/mL、海藻酸钠浓度为10 mg/mL金属锐孔孔径为450μm、泵速4 mL/h、CaCl_2浓度为20 mg/mL的工艺条件下,制备了球形度均匀、分散性好、具有强磁响应性、平均粒径132.2μm的超顺磁性微球,制备工艺对被包封细胞的生长代谢活性无影响。Fe_3O_4包封率为93%~96%。脉冲电场工艺可实现磁性载细胞微球的高效简便制备。  相似文献   

19.
文章采用海藻酸钠与明胶为载体,对磁性Fe 3 O 4进行包埋,使其形成磁性复合载体凝胶微球,经戊二醛交联后,固定生姜蛋白酶,得到磁性复合载体固定生姜蛋白酶;在预实验的基础上,确定影响制备固定化生姜蛋白酶的主要因素;并研究在最优条件下,固定化生姜蛋白酶与其游离酶的酶学性质。结果表明:磁性复合载体固定化生姜蛋白酶的酸碱稳定性范围为pH 3.0~7.0,在20~60℃内具有较好的抗热性,其最适pH为4.0,温度为50℃,表观米氏常数Kmapp为3.162 mg/mL;在此条件下固定60 min,制备的固定化生姜蛋白酶剩余酶活力可达78.69%。重复使用10次后,酶活力剩余53%;在4℃下储存10 d,酶活力仍保留50.66%。说明在最优工艺条件下所制备的固定化酶机械强度大,弹性好,操作稳定性强,酶活力回收率高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号