首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
针对风速序列的周期性和非平稳性,提出了基于小波变换和LS-SVM相结合的风电场风速预测模型,利用小波变换的多分辩分析法对风速序列进行分解,将风速序列投影到不同尺度上.结合LS-SVM的小样本学习能力强和计算简单等特点,将小波分解后的各风速子序列分别采用LS-SVM进行训练和预测,最后将各预测结果进行叠加得到最终的风速预测值.与LS-SVM风速预测方法进行比较,采用该文提出的方法可明显提高短期风速预测的精度,并具有较强的适应性,具有一定的工程应用前景.最后通过具体实例验证了该模型的有效性.  相似文献   

2.
基于SVM方法的风电场短期风速预测   总被引:2,自引:3,他引:2  
针对基于支持向量机的风电场短期风速预测进行研究.选择了不同的输入向量(历史风速时间序列,历史风速和温度.历史风速、温度和风向,历史风速、温度和时间)作为输入进行误差对比分析。实测数据及分析结果表明,采用历史风度和温度的二输入模型,预测效果最佳,为风速的短期预测和发电量预测提供了较好的参考价值。  相似文献   

3.
基于支持向量机的风速预测模型研究   总被引:5,自引:0,他引:5  
张华  曾杰 《太阳能学报》2010,31(7):928-932
由于风速的随机性很大,风速大小的影响因素较多,风速预测的准确度不高.针对这种现象,该文基于支持向量机(SVM)理论,结合风速资料,建立支持向量机(SVM)预测模型来进行短期的风速预测,由支持向量机预测模型得到的预测风速与实际风速基本一致,预测效果较理想,预测的平均绝对百分比误差为10.07%,验证了支持向量机预测模型在风速短期预测中的可行性.  相似文献   

4.
风速具有较大的随机波动性,影响了电网的稳定性,风速预测对于风电并网问题至关重要。本研究采用灰色-马尔可夫链(GM-Markov)与最小二乘支持向量机(LSSVM)预测模型分别对风速进行预测,比较了各单一预测模型的精度;在此基础上研究了动态权重组合模型与0-1法组合预测模型。然后以国内某风电场的实测风速数据为例进行分析,结果表明,单一预测方法时好时坏,稳定性较差,组合预测模型总体效果较好,具有较大的实用价值。  相似文献   

5.
提出了一种基于粒子群(PSO)算法优化最小二乘支持向量机(LS-SVM)的风电场风速预测方法。以相关性较高的历史风速序列作为输入,建立预测模型,并用粒子群算法优化模型参数。在对未来1 h风速进行预测时,文章所提出的模型比最小二乘支持向量机模型及BP神经网络模型具有较高的预测精度和运算速度。算例结果表明,经粒子群优化的最小二乘支持向量机算法是进行短期风速预测的有效方法。  相似文献   

6.
针对目前最小二乘支持向量机选取核参数和惩罚因子的各种方法尚存在着一定的局限性,文章采用果蝇优化算法对参数进行优化选择,提出了基于果蝇优化算法与最小二乘支持向量机结合的风速混合预测方法。对新疆某风电场为期5天的240个(采样间隔0.5 h)实测风速值进行了仿真测试,利用建立的预测模型,对第5天的风速值进行预测,预测结果的平均绝对百分比误差仅为8.32%。将其与单纯的LS-SVM模型和基于网格搜索优化的LS-SVM模型的预测结果作了对比,仿真结果验证了基于果蝇优化算法和最小二乘支持向量机混合预测模型的可行性和果蝇算法对最小二乘支持向量机参数优化的有效性。  相似文献   

7.
基于蚁群优化的最小二乘支持向量机风速预测模型研究   总被引:1,自引:0,他引:1  
曾杰  张华 《太阳能学报》2011,32(3):296-300
基于最小二乘支持向量机理论,建立风速预测模型。同时,由于最小二乘支持向量机参数选取尚无有效方法,该文尝试采用蚁群算法理论来进行参数优化选择。选取某风场前四天的实测风速(采样间隔30min),应用所建立的风速预测模型,来预测第五天的48个风速值,其预测的平均绝对百分比误差仅为9.53%,预测效果较理想,验证了应用蚁群优化算法理论与最小二乘支持向量机理论进行风速预测的可行性,可为风电场规划选址和风力发电功率预测等提供理论支持。  相似文献   

8.
风速信号具有的随机性和波动性的特点给风速预测的准确性带来了巨大挑战。现有的风速预测方法较多,但大都难以满足风电场需求的预测效果。文章提出了一种基于LMD-IMVO-LSSVM的短期风速预测方法。首先采用局部均值分解(LMD)方法将原始风速序列分解为若干个平稳的风速子序列,结合改进多元宇宙优化算法(IMVO)寻优最小二乘支持向量机(LSSVM)的可调参数预测方法,建立了LMD-IMVO-LSSVM的风速预测组合模型;然后对分解得到的每个平稳子序列进行单独的预测,叠加各子序列预测结果,即得到最终的风速预测值。通过实验仿真分析得出,文章提出的组合预测模型可大大提高风速预测的准确性。  相似文献   

9.
受风能随机性和预测模型的影响,风速预测时不可避免地会出现误差,通过挖掘误差特性可探索新的风速预测模型,提高预测精度。提出一种基于误差预测的风速集成学习模型。该模型首先采用快速集合经验模态分解来降低风速序列的随机性,其次采用布谷鸟算法优化最小二乘支持向量机对分解得到的各分量分别建立学习预测模型。同时将历史预测误差作为一个新序列,进行建模预测。最后将原序列的风速预测结果和误差序列预测结果进行叠加得到最终风速预测结果。算例结果表明,与传统方法相比,所提集成预测模型具有更好的预测精度,证明了在风速预测中,精细化挖掘预测误差对于提高预测精度的有效作用。  相似文献   

10.
基于持续法、人工神经网络法(ANN)和支持向量机(SVM)3种不同预测模型对内蒙古某风电场短期风速进行了预测研究,比较了不同单一预测模型的预测精度,并进行了4种不同预测模型的组合预测。计算结果表明,单一预测模型中支持向量机方法精度最高,而组合预测中3种方法组合的预测精度最高,并且组合预测精度均高于单一预测方法的精度。同时发现,当单一模型预测误差之间存在较强的负相关关系时,组合预测精度提高明显;而当单一模型预测误差之间存在较强的正相关关系时,则组合预测精度改进有限。  相似文献   

11.
风电场变压器选取直接影响风电场投资建设与运行的经济性及安全稳定性。针对该问题,以考虑风功率分布规律的思想,指导风电场变压器选型。首先研究风功率分布规律与变压器运行经济性,包括风功率分布的时间与空间特性、单台与双台变压器在不同工况下的运行特性及相互间的对比分析;继而在此基础上,给出风电场初始规划及后期扩建规划中的变压器选型方案,从而使变压器选取达到规划以及运行中的经济最优,在实现其最优化运行的同时亦可提高其运行可靠性。文中依据现场规划中遇到的实际问题构建了具体算例,通过算例说明与结果分析进一步验证了所提方法的可行性与有效性。  相似文献   

12.
风速概率分布及其参数是体现风能资源统计特性的最重要指标之一。以山东省4个风电场测风塔和气象站测风年的逐时风速为样本,采用正态分布、指数分布、威布尔分布、伽马分布和Logistics分布对逐时风速概率分布进行研究,以Akaike信息准则判断概率分布的适用性。研究结果表明,威布尔分布、伽马分布和Logistics分布能更好的拟合小时风速的实际情况。  相似文献   

13.
采用现有方法预测短期变速恒频风力发电系统的风速时,因未分析风力机的运行特性而导致无法准确预测系统的输出无功功率、输出有功功率和短期风速,且预测结果的平均绝对误差和均方误差大,为此提出变速恒频风力发电系统风速的预测方法。首先对风力机的运行特性进行分析,然后采用支持向量机回归算法构建风速预测模型,最后利用风速预测模型完成变速恒频风力发电系统风速的短期预测。实验结果表明,所提方法可准确地预测系统的输出无功功率、输出有功功率和短期风速,且预测结果的平均绝对误差和均方误差小,验证了所提方法的整体有效性。  相似文献   

14.
随着风电接入电网的容量日益增加,系统本身的调峰能力、电网输送空间和安全裕度成为制约电网消纳风电的因素;风速及风电系统的随机波动特性给系统的运行带来冲击和影响,并且风电的接入增加了系统节点电压、频率和支路潮流的随机波动性。基于风电场穿透功率极限的概念,从随机过程的角度分析出风速随机波动特性,提出了风速随机波动特性修正的风电场穿透功率极限优化算法。采用IEEE 30节点系统算例进行了对比验证。研究结果表明,该方法实现了对风电出力随机性的客观描绘,提高了风电并网容量规划方案的灵活性和可靠性。  相似文献   

15.
基于风速历史数据统计法和基于地理信息与数值预报的物理方法都不能经济、有效、准确地对超短期风速做出预测。为了满足超短期风速预测的时效性和准确性,提出了基于风速历史数据和周边风速数据的风速时空信息BP神经网络超短期风速预测的思想,并研究了基于风速时空信息BP神经网络风速预测模型。建立基于MATLAB平台的BP神经网络预测程序,并实例验证了基于风速时空信息BP神经网络风速预测方法具有更高的精确度、时效性和经济性。  相似文献   

16.
针对小型风电机组接入的配电网,构建了双阶段优化重构策略,在考虑风电随机性的同时基于时间尺度求得最优重构方案。第一阶段针对风电随机性,运用场景分析法划分场景并得到风机有功出力,然后采用TLBO算法寻找每个场景的最优拓扑结构;第二阶段基于时间尺度的重构方案确定,首先对某时间段的风速数据进行场景划分,根据场景转换得到准重构时刻,然后以综合费用最小为目标确定该时段内的最优重构方案,并在美国PGE69节点配网系统中接入两台风电机组进行仿真验证。结果表明,所提重构方案有效且实用,能实现含风电接入配网的优化运行。  相似文献   

17.
由于风速的随机性、间歇性,以及风电场内各机组风速、功率的分散性,给风功率预测带来了较大难度。在计算风速线性相关的权值基础上,提出了改进模糊C均值聚类算法(fuzzy c-means,FCM)的风速模型,建立了风电场等值风速与改进FCM风速的关系函数。以某风电场实测数据进行验证,结果表明:所提风电功率预测方法算法简单;该方法预测精度提高了71.35%。在该风电场不同日周期下,验证了所提预测方法的有效性和普适性。  相似文献   

18.
张炜 《水电能源科学》2016,34(1):190-193
为了研究在复杂地形下的风力机优化排布方法,提出一种改进粒子群(PSO)优化方法,并借助风速回归函数解决一部分复杂地形所致的问题,对实际尾流效应设置约束条件,判断风能利用的最优方案,从而快速确定风力机具体安放坐标,通过Matlab建模仿真,并借助WAsP软件对改进PSO优化算法和传统方法进行对比验证。结果表明,改进粒子群(PSO)优化方法与传统方法相比,年发电量提高了近5.2%,且对复杂地形下的风电场优化布局效果较好。  相似文献   

19.
当前风电场功率控制过程中多关注风电机组的发电能力,很少区别对待健康机组和带病机组。对此,以风电机组运行参数为评估指标,计算各指标劣化度,并以综合劣化度为风电机组健康状况的总体评判指标,再结合风电机组启停状态及功率控制要求建立风电场的多目标调度模型。采用混合编码遗传算法优化该模型,获得风电机组启停组合和目标功率值。仿真结果表明,该方法优化了风电机组启停计划,改善了风电机组的整体健康程度,提高了风电场有功输出的可靠性和稳定性,为功率调度过程提供了依据。  相似文献   

20.
[目的]准确的风资源数据对风场的风资源评估和发电量计算有着重大意义.由于机械故障、天气因素和人为影响等原因,风场内风速数据出现采集时间短、间断点多、数据失真等诸多问题,给风资源的评估带来不小的麻烦.[方法]现阶段风电行业内采用基于相关测量预测方法(MCP,Measure-Correlate Predict)(可称之为传...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号