首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Q-rung orthopair fuzzy sets (q-ROFSs), initially proposed by Yager, are a new way to reflect uncertain information. The existing intuitionistic fuzzy sets (IFSs) and Pythagorean fuzzy sets are special cases of the q-ROFSs. However, due to insufficiency in available information, it is difficult for decision makers to exactly express the membership and nonmembership degrees by crisp numbers, and interval membership degree and interval nonmembership degree are good choices. In this paper, we propose the concept of interval-valued q-rung orthopair fuzzy set (IVq-ROFS) based on the ideas of q-ROFSs and some operational laws of q-rung orthopair fuzzy numbers (q-ROFNs). Then, some interval-valued q-rung orthopair weighted averaging operators are presented based on the given operational laws of q-ROFNs. Further, based on these operators, we develop a novel approach to solve multiple-attribute decision making (MADM) problems under interval-valued q-rung orthopair fuzzy environment. Finally, a numerical example is provided to illustrate the application of the proposed method, and the sensitivity analysis is further carried out for the parameters.  相似文献   

2.
    
The q-rung orthopair fuzzy sets are superior to intuitionistic fuzzy sets or Pythagorean fuzzy sets in expressing fuzzy and uncertain information. In this paper, some partitioned Bonferroni means (BMs) for q-rung orthopair fuzzy values have been developed. First, the q-rung orthopair fuzzy partitioned BM (q-ROFPBM) operator and the q-rung orthopair fuzzy partitioned geometric BM (q-ROFPGBM) operator are developed. Some desirable properties and some special cases of the new aggregation operators have been studied. The q-rung orthopair fuzzy weighted partitioned BM (q-ROFWPBM) operator and the q-rung orthopair fuzzy partitioned geometric weighted BM (q-ROFPGWBM) operator are also developed. Then, a new multiple-attribute decision-making method based on the q-ROFWPBM (q-ROFPGWBM) operator is proposed. Finally, a numerical example of investment company selection problem is given to illustrate feasibility and practical advantages of the new method.  相似文献   

3.
    
Multiple-attribute group decision making (MAGDM) under linguistic environment is an important part of modern decision sciences, and information aggregation operator plays an import role in solving MAGDM problems. In this paper, an approach for solving MAGDM problem with q-rung orthopair fuzzy 2-tuple linguistic information is developed. First, the q-rung orthopair fuzzy 2-tuple linguistic weighted averaging (q-ROFTLWA) operator and the q-rung orthopair fuzzy 2-tuple linguistic weighted geometric (q-ROFTLWG) operator are presented. Furthermore, the q-rung orthopair fuzzy 2-tuple linguistic Muirhead mean (q-ROFTLMM) operator and the q-rung orthopair fuzzy 2-tuple linguistic dual Muirhead mean (q-ROFTLDMM) operator are proposed on the basis of Muirhead mean (MM) operator and dual Muirhead mean (DMM) operator. Then, an approach is developed to deal with MAGDM problem under q-rung orthopair fuzzy 2-tuple linguistic environment based on the proposed operators. Finally, a numerical example for selecting desirable emergency alternative(s) in the process of designing emergency preplan is given to illustrate the application of the developed method and demonstrate its effectiveness.  相似文献   

4.
    
The interval-valued q-rung orthopair fuzzy set (IVq-ROFS) provides an extension of Yager's q-rung orthopair fuzzy set (q-ROFS), where membership and nonmembership degrees are subsets of the closed interval [0,1]. In such a situation, it is more superior for decision makers to provide their judgments by intervals instead of crisp numbers due to the uncertainty and vagueness in real life. In this paper, we study the calculus theories of IVq-ROFS from the microscopic. In particular, we first introduce the elementary arithmetic of interval-valued q-rung orthopair fuzzy values (IVq-ROFVs), including addition, multiplication, and their inverse. They are the basis for analysis and calculation throughout the work. In addition, we discuss and prove in detail the operation properties and aggregation operators of IVq-ROFVs. Then, we introduce the concept of interval-valued q-rung orthopair fuzzy functions (IVq-ROFFs), which is the main research object of this paper. After that, we further discuss the continuity, derivatives and differentials of IVq-ROFFs. We also find that the derivatives of IVq-ROFFs are closely related to elasticity, which is an important concept in economics. Finally, we provide some application examples to verify the feasibility and effectiveness of the derived results.  相似文献   

5.
    
q-Rung orthopair fuzzy sets (q-ROFSs), originally presented by Yager, are a powerful fuzzy information representation model, which generalize the classical intuitionistic fuzzy sets and Pythagorean fuzzy sets and provide more freedom and choice for decision makers (DMs) by allowing the sum of the q t h power of the membership and the q t h power of the nonmembership to be less than or equal to 1. In this paper, a new class of fuzzy sets called q-rung orthopair uncertain linguistic sets (q-ROULSs) based on the q-ROFSs and uncertain linguistic variables (ULVs) is proposed, and this can describe the qualitative assessment of DMs and provide them more freedom in reflecting their belief about allowable membership grades. On the basis of the proposed operational rules and comparison method of q-ROULSs, several q-rung orthopair uncertain linguistic aggregation operators are developed, including the q-rung orthopair uncertain linguistic weighted arithmetic average operator, the q-rung orthopair uncertain linguistic ordered weighted average operator, the q-rung orthopair uncertain linguistic hybrid weighted average operator, the q-rung orthopair uncertain linguistic weighted geometric average operator, the q-rung orthopair uncertain linguistic ordered weighted geometric operator, and the q-rung orthopair uncertain linguistic hybrid weighted geometric operator. Then, some desirable properties and special cases of these new operators are also investigated and studied, in particular, some existing intuitionistic fuzzy aggregation operators and Pythagorean fuzzy aggregation operators are proved to be special cases of these new operators. Furthermore, based on these proposed operators, we develop an approach to solve the multiple attribute group decision making problems, in which the evaluation information is expressed as q-rung orthopair ULVs. Finally, we provide several examples to illustrate the specific decision-making steps and explain the validity and feasibility of two methods by comparing with other methods.  相似文献   

6.
    
With the continuous development of the economy and society, decision-making problems and decision-making scenarios have become more complex. The q-rung orthopair fuzzy set is getting more and more attention from researchers, which is more general and flexible than Pythagorean fuzzy set and intuitionistic fuzzy set under complex vague environment. In this study, the concept of q-rung orthopair fuzzy linguistic set (q-ROFLS) is proposed and a new q-rung orthopair fuzzy linguistic method is developed to handle MAGDM problem. Firstly, the conception, operation laws, comparison methods, and distance measure methods of the q-ROFLS are proposed. Secondly, the q-ROFL weighted average operator, q-ROFL ordered weighted average operator, q-ROFL hybrid weighted average operator, q-ROFL weighted geometric operator, q-ROFL ordered weighted geometric operator, and q-ROFL hybrid weighted geometric operator are proposed, and some interesting properties, special cases of these operators are investigated. Furthermore, a new method to cope with MAGDM problem based on q-ROFL weighted average operator (q-ROFL weighted geometric operator) is developed. Finally, a practical example for suppliers selection is provided to verify the practicality of the presented method, and the effectiveness and flexibility of the presented method are illustrated by sensitive analysis and comparative analysis.  相似文献   

7.
    
In this paper, the Hamy mean (HM) operator, weighted HM (WHM), dual HM (DHM) operator, and dual WHM (WDHM) operator under the q-rung orthopair fuzzy sets (q-ROFSs) is studied to propose the q-rung orthopair fuzzy HM (q-ROFHM) operator, q-rung orthopair fuzzy WHM (q-ROFWHM) operator, q-rung orthopair fuzzy DHM (q-ROFDHM) operator, and q-rung orthopair fuzzy weighted DHM (q-ROFWDHM) operator and some of their desirable properties are investigated in detail. Then, we apply these operators to multiple attribute decision-making problems. Finally, a practical example for enterprise resource planning system selection is given to verify the developed approach and to demonstrate its practicality and effectiveness.  相似文献   

8.
    
In this paper, a novel approach is developed to deal with multiple-attribute group decision-making (MAGDM) problem under q-rung orthopair fuzzy environment. Firstly, some operators have been proposed to aggregate q-rung orthopair fuzzy information, such as the q-rung orthopair fuzzy generalized power averaging (q-ROFGPA) operator, the q-rung orthopair fuzzy generalized power weighted averaging (q-ROFGPWA) operator, the q-rung orthopair fuzzy generalized power geometric (q-ROFGPG) operator, and the q-rung orthopair fuzzy generalized power weighted geometric (q-ROFGPWG) operator. In addition, some desirable properties and special cases of these operators are discussed. Second, a novel approach is developed to solve MAGDM problem under the q-rung orthopair fuzzy environment based on the proposed q-ROFGPWA and q-ROFGPWG operators. Finally, a practical example is given to illustrate the application of the proposed method, and further the sensitivity analysis and comparative analysis are carried out.  相似文献   

9.
    
The q-rung orthopair fuzzy set is characterized by membership and nonmembership functions, and the sum of the qth power of them is less than or equal to one. Since it releases the constraints existed in both intuitionistic fuzzy set and Pythagorean fuzzy set, it has wide applications in real cases. However, so far, there is little research on the multiplicative consistency of q-rung orthopair fuzzy preference relation (q-ROFPR). To fill this vacancy, this paper provides a detailed analysis on the multiplicative consistency of q-ROFPR. First, we investigate the concept of multiplicative consistent q-ROFPR and its properties. Subsequently, two goal programming models are proposed to derive the priorities from individual and group q-ROFPRs, respectively. After that, a novel consistency-improving algorithm for q-ROFPR and a weight-generating method for decision-makers are discussed in detail, based on which, a novel group decision-making method is proposed. Finally, a case study concerning the evaluation of rehabilitation program selection is given to illustrate the applicability of the proposed method. The effectiveness and superiority of the proposed method are verified by comparing it with some existing methods.  相似文献   

10.
基于区间值广义正交模糊环境和Frank算子,定义了区间值广义正交模糊Frank算子的运算法则,提出了区间值广义正交模糊Frank加权平均算子(IVq-ROFFWA)和加权几何算子(IVq-ROFFWG),并研究了它们的幂等性、有界性和单调性。然后提出了基于IVq-ROFFWA算子的多属性群决策方法(MAGDM),该方法通过选取满足条件的q值,使用IVq-ROFFWA算子集结得到目标区间值模糊数,比较它们的得分得到最优方案,还得出了不同q值不影响最优方案排序的结论。最后通过实际案例验证了基于IVq-ROFFWA算子的多属性群决策方法的可行性和有效性,验证了不同q值不影响最优方案排序的结论。经过比较分析,基于IVq-ROFFWA算子和IVq-ROFFWG算子的群决策方法与基于其他算子的群决策方法运算结果一致。  相似文献   

11.
    
The Maclaurin symmetric mean (MSM) operator is a classical mean type aggregation operator used in modern information fusion theory, which is suitable to aggregate numerical values. The prominent characteristic of the MSM operator is that it can capture the interrelationship among the multi-input arguments. In this paper, we extend the MSM operator and dual MSM operator to q-rung orthopair fuzzy sets to propose the q-rung orthopair fuzzy MSM operator, q-rung orthopair fuzzy dual MSM operator, q-rung orthopair fuzzy weighted MSM operator, and q-rung orthopair fuzzy weighted dual MSM operator. Then, some desirable properties and special cases of these operators are discussed in detail. Finally, a numerical example is provided to illustrate the feasibility of the proposed methods and deliver the sensitivity analysis and comparative analysis.  相似文献   

12.
    
As an extension of Pythagorean fuzzy sets, the q-rung orthopair fuzzy sets (q-ROFSs) can easily solve uncertain information in a broader perspective. Considering the fine property of q-ROFSs, we introduce q-ROFSs into decision-theoretic rough sets (DTRSs) and use it to portray the loss function. According to the Bayesian decision procedure, we further construct a basic model of q-rung orthopair fuzzy decision-theoretic rough sets (q-ROFDTRSs) under the q-rung orthopair fuzzy environment. At the same time, we design the corresponding method for the deduction of three-way decisions by utilizing projection-based distance measures and TOPSIS. Then, we extend q-ROFDTRSs to adapt the group decision-making (GDM) scenario. To fuse different experts’ evaluation results, we propose some new aggregation operators of q-ROFSs by utilizing power average (PA) and power geometric (PG) operators, that is, q-rung orthopair fuzzy power average, q-rung orthopair fuzzy power weighted average (q-ROFPWA), q-rung orthopair fuzzy power geometric, and q-rung orthopair fuzzy power weighted geometric (q-ROFPWG). In addition, with the aid of q-ROFPWA and q-ROFPWG, we investigate three-way decisions with q-ROFDTRSs under the GDM situation. Finally, we give the example of a rural e-commence GDM problem to illustrate the application of our proposed method and verify our results by conducting two comparative experiments.  相似文献   

13.
    
Complex q-rung orthopair fuzzy sets (CQROFSs) are proposed to convey vague material in decision-making problems. The CQROFSs can enthusiastically modify the region of proof by altering the factor q 1 for real and imaginary parts based on the variation degree and, therefore, favor further uncountable options. Consequently, this set reverses over the existing theories, such as complex intuitionistic fuzzy sets (CIFSs) and complex Pythagorean fuzzy sets (CPFS). In everyday life, there are repeated situations that can occur, which involve an impartial assertiveness of the decision-makers. To determine the best decision to handle such situations, in this study, we propose modern operational laws by joining the characteristics of the truth factor sum and collaboration between the truth degrees into the analysis for CQROFSs. Based on these principles, we determined several weighted averaging neutral aggregation operators (AOs) to collect the CQROF knowledge. Subsequently, we established an original multiattribute decision-making (MADM) procedure by using the demonstrated AOs based on CQROFS. To evaluate the effectiveness, in terms of reliability and consistency, of the proposed operators, they were applied to some numerical examples. A comparative analysis of the investigated operators and other existing operators was also performed to find the dominance and validity of the introduced MADM method.  相似文献   

14.
梁薇  王应明 《控制与决策》2023,38(7):1988-1996
针对应急决策环境所存在的信息不完备、认知不足等问题,区间犹豫模糊集能充分表达决策者在信息评价时的犹豫性和模糊性,但随着研究的深入,发现其存在无法保证信息质量的缺陷.为此,提出更符合实际决策需求、信息表达更加灵活的基本不确定区间犹豫模糊集,其为包含区间犹豫模糊集和确定度的二维信息集.在此基础上,定义基本不确定区间犹豫模糊加权平均算子、犹豫度及可信度,提出基于可信度的专家权重调整方法和属性权重确定方法,充分考虑了决策专家提供评价信息的可靠程度.最后,将广义TODIM方法拓展到基本不确定区间犹豫模糊环境,通过应急决策案例验证所提方法的可行性,并利用灵敏度分析和对比分析验证该方法的稳定性和有效性.  相似文献   

15.
    
Weighted power means with weights and exponents serving as their parameters are generalizations of arithmetic means. Taking into account decision makers' flexibility in decision making, each attribute value is usually expressed by a q-rung orthopair fuzzy value (q-ROFV, q1), where the former indicates the support for membership, the latter support against membership, and the sum of their qth powers is bounded by one. In this paper, we propose the weighted power means of q-rung orthopair fuzzy values to enrich and flourish aggregations on q-ROFVs. First, the q-rung orthopair fuzzy weighted power mean operator is presented, and its boundedness is precisely characterized in terms of the power exponent. Then, the q-rung orthopair fuzzy ordered weighted power mean operator is introduced, and some of its fundamental properties are investigated in detail. Finally, a novel multiattribute decision making method is explored based on developed operators under the q-rung orthopair fuzzy environment. A numerical example is given to illustrate the feasibility and validity of the proposed approach, and it is shown that the power exponent is an index suggesting the degree of the optimism of decision makers.  相似文献   

16.
The q-rung orthopair fuzzy set (qROPFS), proposed by Yager, is a more effective and proficient tool to represent uncertain or vague information in real-life situations. Divergence and entropy are two important measures, which have been extensively studied in different information environments, including fuzzy, intuitionistic fuzzy, interval-valued fuzzy, and Pythagorean fuzzy. In the present communication, we study the divergence and entropy measures under the q-rung orthopair fuzzy environment. First, the work defines two new order-α divergence measures for qROPFSs to quantify the information of discrimination between two qROPFSs. We also examine several mathematical properties associated with order-α qROPF divergence measures in detail. Second, the paper introduces two new parametric entropy functions called “order-α qROPF entropy measures” to measure the degree of fuzziness associated with a qROPFS. We show that the proposed order-α divergence and entropy measures include several existing divergence and entropy measures as their particular cases. Further, the paper develops a new decision-making approach to solve multiple attribute group decision-making problems under the qROPF environment where the information about the attribute weights is completely unknown or partially known. Finally, an example of selecting the best enterprise resource planning system is provided to illustrate the decision-making steps and effectiveness of the proposed approach.  相似文献   

17.
    
In this paper, we first introduce the concept of q-rung orthopair hesitant fuzzy set (q-ROHFS) and discuss the operational laws between any two q-ROHFSs. Then the distance measures between q-ROHFSs are proposed based on the concept of “multiple fuzzy sets”, and we develop the TOPSIS method to the proposed distance measures. The proposed distance measures not only retain the preference information expressed by q-ROHFSs, but also deal with the q-rung orthopair hesitant fuzzy decision information more objectively, In fact, the method can avoid the loss and distortion of the information in actual decision-making process. Furthermore, we give an illustrative example about the selection of energy projects to illustrate the reasonableness and effectiveness of the proposed method, which is also compared with other existing methods. Finally, we make the sensitivity analysis of the parameters in proposed distance measures about the selection of energy projects.  相似文献   

18.
Accuracy functions proposed by various researchers fail to compare some interval-valued intuitionistic fuzzy sets (IVIFSs) correctly. In the present research paper, we propose an improved accuracy function to compare all comparable IVIFSs correctly. The use of proposed accuracy function is also proposed in a method for multi attribute group decision making (MAGDM) method with partially known attributes’ weight. Finally, the proposed MAGDM method is implemented on a real case study of evaluation teachers’ performance. Sensitivity analysis of this method is also done to show the effectiveness of the proposed accuracy function in MAGDM.  相似文献   

19.
    
Generalized orthopair fuzzy sets are extensions of ordinary fuzzy sets by relaxing restrictions on the degrees of support for and support against. Correlation analysis is to measure the statistical relationships between two samples or variables. In this paper, we propose a function measuring the interrelation of two -rung orthopair fuzzy sets, whose range is the unit interval . First, the correlation and correlation coefficient of -rung orthopair membership grades are presented, and their basic properties are investigated. Second, these concepts are extended to -rung orthopair fuzzy sets on discrete universes. Then, we discuss their applications in cluster analysis under generalized orthopair fuzzy environments. And, a real-world problem involving the evaluation of companies is used to illustrate the detailed processes of the clustering algorithm. Finally, we introduce the correlation and correlation coefficient of -rung orthopair fuzzy sets on both bounded and unbounded continuous universes and provide some numerical examples to substantiate such arguments.  相似文献   

20.
In this work, we consider the problem of consensus of multiple attribute group decision making, and develop an automatic approach to reaching consensus among group opinions. In the process of group decision making, each expert provides his/her preferences over the alternatives with respect to each attribute, and constructs an individual decision matrix. The developed approach first aggregates these individual decision matrices into a group decision matrix by using the additive weighted aggregation (AWA) operator, and then establishes a convergent iterative algorithm to gain a consentaneous group decision matrix. Then based on the consentaneous group decision matrix, the approach utilizes the AWA operator to derive the overall attribute values of alternatives, by which the most desirable alternative can be found out. Finally, we detailedly expound the implementation process of the approach with a practical example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号