共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了遥感图像的分类,针对遥感图像的支持向量机(SVM)等浅层结构分类模型特征提取困难、分类精度不理想等问题,设计了一种卷积神经网络(CNN)模型,该模型包含输入层、卷积层、全连接层以及输出层,采用Soft Max分类器进行分类。选取2010年6月6日Landsat TM5富锦市遥感图像为数据源进行了分类实验,实验表明该模型采用多层卷积池化层能够有效地提取非线性、不变的地物特征,有利于图像分类和目标检测。针对所选取的影像,该模型分类精度达到94.57%,比支持向量机分类精度提高了5%,在遥感图像分类中具有更大的优势。 相似文献
2.
Mineral image segmentation plays a vital role in the realization of machine vision based intelligent ore sorting equipment. However, the existing image segmentation methods still cannot effectively solve the problem of adhesion and overlap between mineral particles, and the segmentation performance of small and irregular particles still needs to be improved. To overcome these bottlenecks, we propose a deep learning based image segmentation method to segment the key areas in mineral images using morphological transformation to process mineral image masks. This investigation explores four aspects of the deep learning-based mineral image segmentation model, including backbone selection, module configuration, loss function construction, and its application in mineral image classification. Specifically, referring to the designs of U-Net, FCN, Seg Net, PSP Net, and DeepLab Net, this experiment uses different backbones as Encoder to building ten mineral image segmentation models with different layers, structures, and sampling methods. Simultaneously, we propose a new loss function suitable for mineral image segmentation and compare CNNs-based segmentation models' training performance under different loss functions. The experiment results show that the proposed mineral image segmentation has excellent segmentation performance, effectively solves adhesion and overlap between adjacent particles without affecting the classification accuracy. By using the Mobile Net as backbone, the PSP Net and DeepLab can achieve a high segmentation performance in mineral image segmentation tasks, and the 15 × 15 is the most suitable size for erosion element structure to process the mask images of the segmentation models. 相似文献
3.
通过对传统脉冲耦合神经网络(PCNN)模型的改进,在模型的输入端加入目标区域的边缘数据,使最高灰度级不同的非连通神经元同期点火,实现了多目标区域同时分割。给出了影响同期点火激励范围的主要参数β的自动设定方法,并设计了基于图像最大熵准则的自动分割算法。用分割精度评价准则验证了所提出方法的有效性。实验证明,对于低噪声污染的图像,改进的PCNN模型在多目标识别中的正确接受率达到95%以上,明显优于经典的Fastlinking模型。 相似文献
4.
为解决医学CT图像主动轮廓分割方法中对初始轮廓敏感的问题,提出一种基于超像素和卷积神经网络的人体器官CT图像联合能量函数主动轮廓分割方法。该方法首先基于超像素分割对CT图像进行超像素网格化,并通过卷积神经网络进行超像素分类确定边缘超像素;然后提取边缘超像素的种子点组成初始轮廓;最后在提取的初始轮廓基础上,通过求解本文提出的综合能量函数最小值实现人体器官分割。实验结果表明,本文方法与先进的U-Net方法相比平均Dice系数提高5%,为临床CT图像病变诊断提供理论基础和新的解决方案。 相似文献
5.
Biopsy is one of the most commonly used modality to identify breast cancer in women, where tissue is removed and studied by the pathologist under the microscope to look for abnormalities in tissue. This technique can be time-consuming, error-prone, and provides variable results depending on the expertise level of the pathologist. An automated and efficient approach not only aids in the diagnosis of breast cancer but also reduces human effort. In this paper, we develop an automated approach for the diagnosis of breast cancer tumors using histopathological images. In the proposed approach, we design a residual learning-based 152-layered convolutional neural network, named as ResHist for breast cancer histopathological image classification. ResHist model learns rich and discriminative features from the histopathological images and classifies histopathological images into benign and malignant classes. In addition, to enhance the performance of the developed model, we design a data augmentation technique, which is based on stain normalization, image patches generation, and affine transformation. The performance of the proposed approach is evaluated on publicly available BreaKHis dataset. The proposed ResHist model achieves an accuracy of 84.34% and an F1-score of 90.49% for the classification of histopathological images. Also, this approach achieves an accuracy of 92.52% and F1-score of 93.45% when data augmentation is employed. The proposed approach outperforms the existing methodologies in the classification of benign and malignant histopathological images. Furthermore, our experimental results demonstrate the superiority of our approach over the pre-trained networks, namely AlexNet, VGG16, VGG19, GoogleNet, Inception-v3, ResNet50, and ResNet152 for the classification of histopathological images. 相似文献
6.
图像分割是超声医学图像学中的难题之一。改进的Chan-Vese(C-V)法加入了约束符号距离函数的能量项,避免了演化时候的重新初始化。在改进C-V模型的基础上,首先借用分水岭中的思想,找到分割目标的近似轮廓,并以此轮廓生成符号距离函数,然后采用改进的C-V法进行超声图像分割。实验表明,改进的方法有更高的精准度和对多目标分割的能力。 相似文献
7.
OCT视网膜图像中存在着噪声和散斑,单一的提取空间特征往往容易遗漏一些重要信息,导致不能准确地分割目标区域。而OCT图像本身存在光谱频域特征,针对OCT图像的频域特征,本文基于U-Net和快速傅立叶卷积提出一种新的双编码器模型以提高对OCT图像视网膜层、液体的分割性能,提出的频域编码器可以提取图像频域信息并通过快速傅里叶卷积转换为空间信息,将很好地弥补单一空间编码器遗漏特征信息的不足。经过与其他经典模型的对比和消融实验,结果表明,随着频域编码器的添加,该模型能有效提升对视网膜层和液体的分割性能,平均Dice系数和mIoU相较于U-Net均提高2%,相较于ReLayNet分别提高8%和4%,其中对液体的分割提升尤为明显,相较于U-Net 模型Dice系数提高了10%。 相似文献
8.
提出一种基于间断自适应高斯马尔可夫随机场(DA-GMRF)模型的无监督图像分割方法.针对MRF模型中的过平滑问题,利用边缘信息构造能量函数,定义了一种DA-GMRF模型.利用灰度直方图势函数自动确定分类数及分割阈值,进行多阈值分割,得到DA-GMRF模型中标记场的初始化,用Metroplis采样器算法进行标记场的优化,实现了图像的无监督分割.实验结果表明了该方法的有效性. 相似文献
9.
ABSTRACTThis paper proposes the multiple-hypotheses image segmentation and feed-forward neural network classifier for food recognition to improve the performance. Initially, the food or meal image is given as input. Then, the segmentation is applied to identify the regions, where a particular food item is located using salient region detection, multi-scale segmentation, and fast rejection. Then, the features of every food item are extracted by the global feature and local feature extraction. After the features are obtained, the classification is performed for each segmented region using a feed-forward neural network model. Finally, the calorie value is computed with the aid of (i) food volume and (ii) calorie and nutrition measure based on mass value. The experimental results and performance evaluation are validated. The outcome of the proposed method attains 0.947 for Macro Average Accuracy (MAA) and 0.959 for Standard Accuracy (SA), which provides better classification performance. 相似文献
10.
针对Chan-Vese的无边界主动轮廓模型(CV模型)只能区分前景与背景的缺点,提出了一种基于多阈值单水平集的医学图像分割方法,并将此方法应用于微创手术的预处理中.由于医学图像结构复杂,具有器官轮廓多连接等特点,因此使用常规的水平集方法进行分割往往不能取得理想的效果,而该方法采用修改目标泛函的方式引入多类分割,具有多区域分割的特点,只需经过一次单水平集的迭代循环,即可将图像根据灰度不同划分为多个区域,具有精确、快速等优点.对不同的合成图像和医学图像的实验结果表明,该方法实现了快速精确的多区域分割,能很好地提取到医学图像中的骨骼轮廓,分割效果达到了预期水平. 相似文献
11.
Automated retinal disease detection and grading is one of the most researched areas in medical image analysis. In recent years, Deep Learning models have attracted much attention in this field. Hence, in this paper, we present a Deep Learning-based, lightweight, fully automated end-to-end diagnostic system for the detection of the two major retinal diseases, namely diabetic macular oedema (DME) and drusen macular degeneration (DMD). Early detection of these diseases is important to prevent vision impairment. Optical coherence tomography (OCT) is the main imaging technique for detecting these diseases. The model proposed in this work is based on residual blocks and channel attention modules. The performance of the model is evaluated using the publicly available Mendeley OCT dataset and the Duke dataset. We were able to achieve a classification accuracy of 99.5% in the Mendeley test dataset and 94.9% in the Duke dataset with the proposed model. For the application, we performed an extensive evaluation of pre-trained models (LeNet, AlexNet, VGG-16, ResNet50 and SE-ResNet). The proposed model has a much smaller number of trainable parameters and shows superior performance compared to existing methods. 相似文献
12.
In this paper, we propose a region-based active contour model for image segmentation. By combining the region fitting energy based on coefficient of variation with the variable exponent p-Laplace energy, the proposed method can perform well in segmenting complex images. The region fitting energy conducts the evolving curve to reach the boundaries of the objects, and the p-Laplace energy can handle the topological changes and extract the boundaries accurately. In order to eliminate the re-initialization step, an augmented Lagrangian method is employed to solve the optimization problem. The results of experiments on synthetic and real images demonstrate that our method can successfully segment complex object boundaries, and it is robust to noise and not sensitive to the initial position of contours. 相似文献
13.
为了克服传统分水岭算法引起的过分割问题,提出了一种基于简单线性迭代聚类(SLIC)与分水岭算法相结合的彩色图像分割算法,以获得更理想的分割效果。该算法首先利用图像复杂度计算预分割的超像素个数,并利用SLIC对原始图像进行超像素分割预处理,以减少后续处理中的冗余信息;然后,提出了一种自适应计算阈值的方法对预处理图像的梯度图像进行阈值处理,以有效去除噪声,获得较完整的轮廓信息;最后,利用分水岭分割算法对进行极小值标记提取后的图像进行分割。通过对大量图片进行实验表明,本文算法可以有效地抑制传统分水岭算法所产生的过分割问题,在LCE和GCE的对比上优于传统算法,分割质量有所提高。 相似文献
14.
为克服快速分形图像编码带来的解码图像质量下降问题,提出了一种神经网络与方差混合编码的快速分形图像编码算法.该算法结合图像子块复杂度与方差值的对应关系,根据每个区块的方差值大小选择适当的映射编码方法,即对于方差值相对小的区块采用方差编码以提高编码速度,对于方差值相对大的区块采用神经网络编码以提高编码质量.该算法可以较好地修正传统分形编码中由于自仿射映射结构限制所带来的解码质量偏低的问题,在大幅提高编码速度的同时,很好地保持了图像的编码质量.实验结果表明,该算法对比基本分形编码算法可以加速24倍,解码图像的质量对比方差快速分形编码算法有1.1dB的提高.同时,该算法的硬件实现比较容易,非常贴近实用化. 相似文献
15.
Prevention of cervical cancer becomes essential and is carried out by the use of Pap smear images. Pap smear test analysis is laborious and tiresome work performed visually using a cytopathologist. Therefore, automated cervical cancer diagnosis using automated methods are necessary. This paper designs an optimal deep learning based Inception model for cervical cancer diagnosis (ODLIM-CCD) using pap smear images. The proposed ODLIM-CCD technique incorporates median filtering (MF) based pre-processing to discard the noise and Otsu model based segmentation process. Besides, deep convolutional neural network (DCNN) based Inception with Residual Network (ResNet) v2 model is utilized for deriving the feature vectors. Moreover, swallow swarm optimization (SSO) based hyperparameter tuning process is carried out for the optimal selection of hyperparameters. Finally, recurrent neural network (RNN) based classification process is done to determine the presence of cervical cancer or not. In order to showcase the improved diagnostic performance of the ODLIM-CCD technique, a series of simulations occur on benchmark test images and the outcomes highlighted the improved performance over the recent approaches with a superior accuracy of 0.9661. 相似文献
16.
声呐图像受噪声影响严重,分辨率低,传统算法对其目标分割效果较差,为此,提出了小波域多分辨率MRF模型的声呐图像分割算法。小波域多分辨率分析有利于提取声呐图像弱特征信息;每一分辨率中的观测特征采用高斯混合模型建模,尺度内同标记的观测特征用高斯模型建模,用各向同性的双点多级逻辑(Multi-Level Logistic,MLL)模型建模每一尺度的标记场;最后,用迭代条件模式(Iterated Conditional Mode,ICM)实现多分辨率马尔可夫随机场(Multi-Resolution Markov Random Field,MRA-MRF)中能量函数的最优解,获取标记场,完成声呐图像分割。从视觉效果和定量分析两方面验证。对比实验的结果表明,该文算法能有效地提取声呐图像的弱目标信息,较好地将目标区域和背景区域分割出来,具有较高的分割精度和鲁棒性。 相似文献
17.
车道线识别是自动驾驶环境感知的一项重要任务。近年来,基于卷积神经网络的深度学习方法在目标检测和场景分割中取得了很好的效果。本文借鉴语义分割的思想,设计了一个基于编码解码结构的轻量级车道线分割网络。针对卷积神经网络计算量大的问题,引入深度可分离卷积来替代普通卷积以减少卷积运算量。此外,提出了一种更高效的卷积结构LaneConv和LaneDeconv来进一步提高计算效率。为了获取更好的车道线特征表示能力,在编码阶段本文引入了一种将空间注意力和通道注意力串联的双注意力机制模块(CBAM)来提高车道线分割精度。在Tusimple车道线数据集上进行了大量实验,结果表明,本文方法能够显著提升车道线的分割速度,且在各种条件下都具有良好的分割效果和鲁棒性。与现有的车道线分割模型相比,本文方法在分割精度方面相似甚至更优,而在速度方面则有明显提升。 相似文献
18.
提出基于灰度值频数和遍历八方向的指纹图像分割算法。对于脊谷线灰度值相差较大的,利用灰度直方图上出现频数较多的两个灰度级的差值大小,判断是否为指纹前景区;脊谷线灰度值相差不大的,利用纹线的方向性,通过八个方向的模板计算在各个方向上灰度差值的大小,确定是否为指纹前景区。该方法的阈值可以根据图像自然决定,避免了人为选择阈值的困难和不准确性。对脊谷线灰度值相差较大、不大、较小的指纹图均能容易而准确地分割,只求出指纹的边界而不改变指纹图。实验表明,与常见的分割方法—方向图、方差法相比,该方法的平均误分概率大大减小,比方差法降低5.7875%,比方向图法降低5.6625%,且对指纹图像脊谷线的对比度和方向性要求不高,鲁棒性更强。 相似文献
19.
Pathological image analysis plays a significant role in effective disease diagnostics. In this article, a tool for diagnosis assistance by automatic segmentation of bone marrow images is introduced. The aim of our segmentation is to demarcate cell's component: nucleus, cytoplasm, red cells, and background. Different color spaces were used to extract color's features to profit of their complementarity. We introduce several dimensionality reduction techniques. These techniques are exemplified on a support vector machine pixel‐based bone marrow image segmentation problem in which it is shown that it may give significant improvement in segmentation accuracy and time consuming. © 2013 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 23, 22–28, 2013 相似文献
20.
针对脉冲耦合神经网络无法确定最优分割的问题,提出了一种将脉冲耦合神经网络和类间方差准则相结合的图像分割方法。在每次迭代时将脉冲耦合神经网络点火的神经元对应的像素作为目标,未点火的神经元对应的像素作为背景,计算目标和背景之间的类间方差,取类间方差值最大的分割图像作为最终结果。实验结果表明该方法能获得视觉效果较好的分割结果并具有较强的普适性,对一幅大小为256×256的图像进行分割所需要的时间是0.8秒左右。 相似文献
|