首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Brain tumor classification and retrieval system plays an important role in medical field. In this paper, an efficient Glioma Brain Tumor detection and its retrieval system is proposed. The proposed methodology consists of two modules as classification and retrieval. The classification modules are designed using preprocessing, feature extraction and tumor detection techniques using Co‐Active Adaptive Neuro Fuzzy Inference System (CANFIS) classifier. The image enhancement can be achieved using Heuristic histogram equalization technique as preprocessing and further texture features as Local Ternary Pattern (LTP) features and Grey Level Co‐occurrence Matrix (GLCM) features are extracted from the enhanced image. These features are used to classify the brain image into normal and abnormal using CANFIS classifier. The tumor region in abnormal brain image is segmented using normalized graph cut segmentation algorithm. The retrieval module is used to retrieve the similar segmented tumor regions from the dataset for diagnosing the tumor region using Euclidean algorithm. The proposed Glioma Brain tumor classification methodology achieves 97.28% sensitivity, 98.16% specificity and 99.14% accuracy. The proposed retrieval system achieves 97.29% precision and 98.16% recall rate with respect to ground truth images.  相似文献   

2.
Reliable brain tumor radiology is one of the serious mortality issues of medical hospitals and on priority of healthcare departments. In this research, the presence of brain tumor and its type (if exists) is automatically diagnosed from magnetic resonance imaging (MRI). The first step is most important where suitable parameters from Gabor texture analysis are extracted and then classified with a support vector machine. The drive of this research activity is to verify robustness of the proposed model on cross datasets, so that it could deal with variability and multiformity present in MRI data. Further to this, the developed approach is able to deploy as a real application in the local environment. Therefore, once a model has been trained and tested on an openly available benchmarked dataset, it is retested on a different dataset acquired from a local source. Standard evaluation measures, that is, accuracy, specificity, sensitivity, precision, and AUC-values have been used to evaluate the robustness of the proposed method. It has been established that the proposed method has the ability to deal with multiformity, variability, and local medical traits present in brain MRI data.  相似文献   

3.
The uncontrolled growth of cells in brain regions leads to the tumor regions and these abnormal tumor regions are scanned by magnetic resonance imaging (MRI) technique as an image. This paper proposes random forest classifier based Glioma brain tumor detection and segmentation methodology using feature optimization technique. The texture features are derived from brain MRI image and these derived feature set are now optimized by ant colony optimization algorithm. These optimized set of features are trained and classified using random forest classification method. This classifier classifies the brain MRI image into Glioma or non-Glioma image based on the optimized set of features. Furthermore, energy-based segmentation method is applied on the classified Glioma image for segmenting the tumor regions. The proposed methodology for Glioma brain tumor stated in this paper achieves 97.7% of sensitivity, 96.5% of specificity, and 98.01% of accuracy.  相似文献   

4.
This paper presents a skull stripping method to segment the brain from MRI human head scans using multi-seeded region growing technique. The proposed method has two stages. In Stage-1, the brain in the middle slice is segmented, the brains in the remaining slices are segmented in Stage-2. In each stage, the proposed method is required to identify the rough brain mask. The fine brain region in the rough brain mask is segmented using multi-seeded region growing approach. The proposed method uses multiple seed points which are selected automatically based on the intensity profile of grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) of the brain image. The proposed brain segmentation method using multi-seeded region growing (BSMRG) was validated using 100 volumes of T1, T2 and PD-weighted MR brain images obtained from Internet Brain Segmentation Repository (IBSR), LONI and Whole Brain Atlas (WBA). The best Dice (D) value of 0·971 and Jaccard (J) value of 0·944 were recorded by the proposed BSMRG method on IBSR dataset. For LONI dataset, the best values of D?=?0·979 and J?=?0·960 were obtained for the sagittal oriented images by the proposed method. The performance consistency of the proposed method was tested on the brain images of all types and orientation and have and produced better and stable results than the existing methods Brain Extraction Tool (BET), Brain Surface Extraction (BSE), Watershed Algorithm (WAT), Hybrid Watershed Algorithm (HWA) and Skull Stripping using Graph Cuts (GCUT).  相似文献   

5.
The development of abnormal cells in human brain leads to the formation of tumors. This article proposes an efficient approach for brain tumor detection and segmentation using image fusion and co-active adaptive neuro fuzzy inference system (CANFIS) classification method. The brain MRI images are fused and the dual tree complex wavelet transform is applied on the fused image. Then, the statistical features, local ternary pattern features and gray level co-occurrence matrix features. These extracted features are classified using CANFIS classification approach for the classification of source brain MRI image into either normal or abnormal. Further, morphological operations are applied on the abnormal brain MRI image for segmenting the tumor regions. The proposed methodology is evaluated with respect to the performance metrics sensitivity, specificity, positive predictive value, negative predictive value, tumor segmentation accuracy with detection rate. The proposed image fusion based brain tumor detection and classification methodology stated in this article achieves 96.5% of average sensitivity, 97.7% of average specificity, 87.6% of positive predictive value, 96.6% of negative predictive value, and 98.8% of average accuracy.  相似文献   

6.
This article proposes a novel and efficient methodology for the detection of Glioblastoma tumor in brain MRI images. The proposed method consists of the following stages as preprocessing, Non‐subsampled Contourlet transform (NSCT), feature extraction and Adaptive neuro fuzzy inference system classification. Euclidean direction algorithm is used to remove the impulse noise from the brain image during image acquisition process. NSCT decomposes the denoised brain image into approximation bands and high frequency bands. The features mean, standard deviation and energy are computed for the extracted coefficients and given to the input of the classifier. The classifier classifies the brain MRI image into normal or Glioblastoma tumor image based on the feature set. The proposed system achieves 99.8% sensitivity, 99.7% specificity, and 99.8% accuracy with respect to the ground truth images available in the dataset.  相似文献   

7.
Segmentation of Brain tumor from the magnetic resonance imaging (MRI) of head scans is an essential requirement for clinical diagnosis since manual segmentation is a fatigue and time‐consuming process. Recent computer‐aided diagnosis systems depend on the development of fully automatic methods to overcome these problems. In the present work, a fully automated algorithm is proposed to extract and segment tumor regions from multimodal magnetic resonance imaging (MMMRI) sequences. The algorithm has three phases: (a) tumor portion extraction, (b) tumor substructure segmentation, and (c) 3D postprocessing. First, the algorithm extracts tumor portion using a set of image processing operations from T2, fluid‐attenuated inversion recovery (FLAIR), and T1C images. Here, the proposed modified fuzzy c means clustering algorithm is used for enhancing the tumor portion extraction process. Then, the substructures of tumor such as edema, enhancing tumor, and necrotic regions are segmented from MMMRI sequences, T2, FLAIR, and T1C using region‐wise set operations in Phase II. Finally, 3D visualization of the segmented tumor and volume estimation is performed as postprocessing in Phase III. The proposed work was experimented on BraTS 2013 dataset. The quantitative analysis is performed using William's Index, Dice, sensitivity, specificity, and accuracy and is compared with 19 state‐of‐the‐art methods. The proposed method yields comparable results as 77%, 53%, and 59% of Dice for complete, core, and enhancing tumor regions, respectively.  相似文献   

8.
Fully automatic brain tumor segmentation is one of the critical tasks in magnetic resonance imaging (MRI) images. This proposed work is aimed to develop an automatic method for brain tumor segmentation process by wavelet transformation and clustering technique. The proposed method using discrete wavelet transform (DWT) for pre‐ and post‐processing, fuzzy c‐means (FCM) for brain tissues segmentation. Initially, MRI images are preprocessed by DWT to sharpen the images and enhance the tumor region. It assists to quicken the FCM clustering technique and classified into four major classes: gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), and background (BG). Then check the abnormality detection using Fuzzy symmetric measure for GM, WM, and CSF classes. Finally, DWT method is applied in segmented abnormal region of images respectively and extracts the tumor portion. The proposed method used 30 multimodal MRI training datasets from BraTS2012 database. Several quantitative measures were calculated and compared with the existing. The proposed method yielded the mean value of similarity index as 0.73 for complete tumor, 0.53 for core tumor, and 0.35 for enhancing tumor. The proposed method gives better results than the existing challenging methods over the publicly available training dataset from MICCAI multimodal brain tumor segmentation challenge and a minimum processing time for tumor segmentation. © 2016 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 26, 305–314, 2016  相似文献   

9.
In this article, a fully unsupervised method for brain tissue segmentation of T1‐weighted MRI 3D volumes is proposed. The method uses the Fuzzy C‐Means (FCM) clustering algorithm and a Fully Connected Cascade Neural Network (FCCNN) classifier. Traditional manual segmentation methods require neuro‐radiological expertise and significant time while semiautomatic methods depend on parameter's setup and trial‐and‐error methodologies that may lead to high intraoperator/interoperator variability. The proposed method selects the most useful MRI data according to FCM fuzziness values and trains the FCCNN to learn to classify brain’ tissues into White Matter, Gray Matter, and Cerebro‐Spinal Fluid in an unsupervised way. The method has been tested on the IBSR dataset, on the BrainWeb Phantom, on the BrainWeb SBD dataset, and on the real dataset “University of Palermo Policlinico Hospital” (UPPH), Italy. Sensitivity, Specificity, Dice and F‐Factor scores have been calculated on the IBSR and BrainWeb datasets segmented using the proposed method, the FCM algorithm, and two state‐of‐the‐art brain segmentation software packages (FSL and SPM) to prove the effectiveness of the proposed approach. A qualitative evaluation involving a group of five expert radiologists has been performed segmenting the real dataset using the proposed approach and the comparison algorithms. Finally, a usability analysis on the proposed method and reference methods has been carried out from the same group of expert radiologists. The achieved results show that the segmentations of the proposed method are comparable or better than the reference methods with a better usability and degree of acceptance.  相似文献   

10.
Brain tumor and brain stroke are two important causes of death in and around the world. The abnormalities in brain cell leads to brain stroke and obstruction in blood flow to brain cells leads to brain stroke. In this article, a computer aided automatic methodology is proposed to detect and segment ischemic stroke in brain MRI images using Adaptive Neuro Fuzzy Inference (ANFIS) classifier. The proposed method consists of preprocessing, feature extraction and classification. The brain image is enhanced using Heuristic histogram equalization technique. Then, texture and morphological features are extracted from the preprocessed image. These features are optimized using Genetic Algorithm and trained and classified using ANFIS classifier. The performance of the proposed ischemic stroke detection system is analyzed in terms of sensitivity, specificity, accuracy, positive predictive value, negative predictive value, and Mathew's correlation coefficient.  相似文献   

11.
Brain tumor is one of the most dangerous disease that causes due to uncontrollable and abnormal cell partition. In this paper, we have used MRI brain scan in comparison with CT brain scan as it is less harmful to detect brain tumor. We considered watershed segmentation technique for brain tumor detection. The proposed methodology is divided as follows: pre-processing, computing foreground applying watershed, extract and supply features to machine learning algorithms. Consequently, this study is tested on big data set of images and we achieved acceptable accuracy from K-NN classification algorithm in detection of brain tumor.  相似文献   

12.
In the last decade, there has been a significant increase in medical cases involving brain tumors. Brain tumor is the tenth most common type of tumor, affecting millions of people. However, if it is detected early, the cure rate can increase. Computer vision researchers are working to develop sophisticated techniques for detecting and classifying brain tumors. MRI scans are primarily used for tumor analysis. We proposed an automated system for brain tumor detection and classification using a saliency map and deep learning feature optimization in this paper. The proposed framework was implemented in stages. In the initial phase of the proposed framework, a fusion-based contrast enhancement technique is proposed. In the following phase, a tumor segmentation technique based on saliency maps is proposed, which is then mapped on original images based on active contour. Following that, a pre-trained CNN model named EfficientNetB0 is fine-tuned and trained in two ways: on enhanced images and on tumor localization images. Deep transfer learning is used to train both models, and features are extracted from the average pooling layer. The deep learning features are then fused using an improved fusion approach known as Entropy Serial Fusion. The best features are chosen in the final step using an improved dragonfly optimization algorithm. Finally, the best features are classified using an extreme learning machine (ELM). The experimental process is conducted on three publically available datasets and achieved an improved accuracy of 95.14, 94.89, and 95.94%, respectively. The comparison with several neural nets shows the improvement of proposed framework.  相似文献   

13.
Multimodal medical image data provide different structured and functional information, which helps segment brain tumor and gets a reliable and accurate diagnosis. Segmenting brain tumors in magnetic resonance imaging (MRI) is a challenging task because brain tumors can be at any location with changeable shape and size. Existing deep neural networks for brain tumor segmentation use few connections to fuse multilevel information. To make use of multilevel information from multimodal MRIs, we propose dual‐pathway DenseNets with fully lateral connections (DP‐DenseNets), a three‐dimensional (3D) fully convolutional neural network that uses dense connectivity to construct dual‐pathway architecture to multimodal brain tumor segmentation problem. Each two similar imaging modalities have a pathway, for one thing, the bottom‐up pathway with dense connectivity is developed for extracting features; another, the top‐down pathway concatenates the features of the bottom‐up pathway in all layers. Dual pathways with different loss functions and fully lateral connectivity from the bottom‐up pathway to the top‐down pathway provide an abundant combination of different levels of features. Comparing to these fusion schemes such as input‐level fusion and later‐level fusion, this architecture leverages semantics from low to high levels, which is provided by fully lateral connectivity. Our model is evaluated on the dataset from Brain Tumor Segmentation Challenge 2017 (BRATS 2017), and the experiments show that our method achieves better performance than other 3D networks.  相似文献   

14.
The detection and segmentation of tumor region in brain image is a critical task due to the similarity between abnormal and normal region. In this article, a computer‐aided automatic detection and segmentation of brain tumor is proposed. The proposed system consists of enhancement, transformation, feature extraction, and classification. The shift‐invariant shearlet transform (SIST) is used to enhance the brain image. Further, nonsubsampled contourlet transform (NSCT) is used as multiresolution transform which transforms the spatial domain enhanced image into multiresolution image. The texture features from grey level co‐occurrence matrix (GLCM), Gabor, and discrete wavelet transform (DWT) are extracted with the approximate subband of the NSCT transformed image. These extracted features are trained and classified into either normal or glioblastoma brain image using feed forward back propagation neural networks. Further, K‐means clustering algorithm is used to segment the tumor region in classified glioblastoma brain image. The proposed method achieves 89.7% of sensitivity, 99.9% of specificity, and 99.8% of accuracy.  相似文献   

15.
Brain tumor is an anomalous proliferation of cells in the brain that can evolve to malignant and benign tumors. Currently, segmentation of brain tumor is the most important surgical and pharmaceutical procedures. However, manually segmenting brain tumors is hard because it is hard to find erratically shaped tumors with only one modality; the MRI modalities are integrated to provide multi-modal images with data that can be utilized to segment tumors. The recent developments in machine learning and the accessibility of medical diagnostic imaging have made it possible to tackle the challenges of segmenting brain tumors with deep neural networks. In this work, a novel Shuffled-YOLO network has been proposed for segmenting brain tumors from multimodal MRI images. Initially, the scalable range-based adaptive bilateral filer (SCRAB) pre-processing technique was used to eliminate the noise artifacts from MRI while preserving the edges. In the segmentation phase, we propose a novel deep Shuffled-YOLO architecture for segmenting the internal tumor structures that include non-enhancing, edema, necrosis, and enhancing tumors from the multi-modality MRI sequences. The experimental fallouts reveal that the proposed Shuffled-YOLO network achieves a better accuracy range of 98.07% for BraTS 2020 and 97.04% for BraTS 2019 with very minimal computational complexity compared to the state-of-the-art models.  相似文献   

16.
The abrupt changes in brain cells due to the environmental effects or genetic disorders leads to form the abnormal lesions in brain. These abnormal lesions are combined as mass and known as tumor. The detection of these tumor cells in brain image is a complex task due to the similarities between normal cells and tumor cells. In this paper, an automated brain tumor detection and segmentation methodology is proposed. The proposed method consists of feature extraction, classification and segmentation. In this paper, Grey Level Co‐Occurrence Matrix (GLCM), Discrete Wavelet Transform (DWT) and Law's texture features are used as features. These features are fed to Adaptive Neuro Fuzzy Inference System (ANFIS) classifier as input pattern, which classifies the brain image. Morphological operations are now applied on the classified abnormal brain image to segment the tumor regions. The proposed system achieves 95.07% of sensitivity, 99.84% of specificity and 99.80% of accuracy for tumor segmentation.  相似文献   

17.
Brain tumor segmentation and classification is a crucial challenge in diagnosing, planning, and treating brain tumors. This article proposes an automatic method that categorizes the severity level of the tumors to render an effective diagnosis. The proposed fractional Jaya optimizer-deep convolutional neural network undergoes the severity classification based on the features obtained from the segments of the magnetic resonance imaging (MRI) images. The segments are obtained using the particle swarm optimization that ensures the optimal selection of the segments from the MRI image and yields the core tumor and the edema tumor regions. The experimentation using the BRATS database reveals that the proposed method acquired a maximal accuracy, specificity, and sensitivity of 0.9414, 0.9429, and 0.9708, respectively.  相似文献   

18.
Magnetic resonance imaging (MRI) brain tumor segmentation is a crucial task for clinical treatment. However, it is challenging owing to variations in type, size, and location of tumors. In addition, anatomical variation in individuals, intensity non-uniformity, and noises adversely affect brain tumor segmentation. To address these challenges, an automatic region-based brain tumor segmentation approach is presented in this paper which combines fuzzy shape prior term and deep learning. We define a new energy function in which an Adaptively Regularized Kernel-Based Fuzzy C-Means (ARKFCM) Clustering algorithm is utilized for inferring the shape of the tumor to be embedded into the level set method. In this way, some shortcomings of traditional level set methods such as contour leakage and shrinkage have been eliminated. Moreover, a fully automated method is achieved by using U-Net to obtain the initial contour, reducing sensitivity to initial contour selection. The proposed method is validated on the BraTS 2017 benchmark dataset for brain tumor segmentation. Average values of Dice, Jaccard, Sensitivity and specificity are 0.93 ± 0.03, 0.86 ± 0.06, 0.95 ± 0.04, and 0.99 ± 0.003, respectively. Experimental results indicate that the proposed method outperforms the other state-of-the-art methods in brain tumor segmentation.  相似文献   

19.
In this work, a simple and efficient CAD (computer‐aided diagnostic) system is proposed for tumor detection from brain magnetic resonance imaging (MRI). Poor contrast MR images are preprocessed by using morphological operations and DSR (dynamic stochastic resonance) technique. The appropriate segmentation of MR images plays an important role in yielding the correct detection of tumor. On examination of three views of brain MRI, it was visible that the region of interest (ROI) lies in the middle and its size ranges from 240 × 240 mm2 to 280 × 280 mm2. The proposed system makes effective use of this information and identifies four blocks from the desired ROI through block‐based segmentation. Texture and shape features are extracted for each block of all MRIs in the training set. The range of these feature values defines the threshold to distinguish tumorous and nontumorous MRIs. Features of each block of an MRI view are checked against the threshold. For a particular feature, if a block is found tumorous in a view, then the other views are also checked for the presence of tumor. If corresponding blocks in all the views are found to be tumorous, then the MRI is classified as tumorous. This selective block processing technique improves computational efficiency of the system. The proposed technique is well adaptive and fast, and it is compared with well‐known existing techniques, like k‐means, fuzzy c‐means, etc. The performance analysis based on accuracy and precision parameters emphasizes the effectiveness and efficiency of the proposed work.  相似文献   

20.
In this article, the segmented brain tumor region is diagnosed into mild, moderate, and severe case based on the presence of tumor cells in the brain components such as Gray Matter (GM), White Matter (WM), and cerebrospinal fluid (CSF). The modified spatial fuzzy c mean algorithm is used to segment brain tissues. The feature Local binary pattern is extracted from segmented tissues, which is trained and classified by ANFIS Classifier. The performance of the proposed brain tissues segmentation system is analyzed in terms of sensitivity, specificity, and accuracy with respect to manually segmented ground truth images. The severity of brain tumor is diagnosed into mild case if the segmented brain tumor is present in the grey matter. The severity of brain tumor is diagnosed into moderate case if the segmented brain tumor is present in the WM. The severity of brain tumor is diagnosed into severe case if the segmented brain tumor is present in the CSF region. The immediate surgery is required for severe case and medical treatment is preferred for mild and moderate case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号