首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper presents a novel design of a differential C4D (DC4D) sensor based on three electrodes for both conductive and non-conductive fluidic channel. This structure consists of two single C4D with an applied carrier sinusoidal signal to the center electrode as the excitation electrode. The electrodes are directly bonded on the PCB with built-in differential amplifier and signal processing circuit in order to reduce the parasitic component and common noise. In the non-conductive fluidic channel, the output voltage and capacitance changes 214.39 mV and 14 fF, respectively when a 3.83 μl tin particle crosses an oil channel. In conductive fluidic channel, the output voltage and admittance change up to 300 mV and 0.07 μS for the movement of a 4.88 μl plastic particle through channel. Moreover, the voltage change of this sensor is linear relation with the volume of investigated particle. This sensor also allows measuring velocity of particle inside fluidic channel and resistivity of the conductive fluidic.  相似文献   

2.
We developed a new approach for particle separation by introducing viscosity difference of the sheath flows to form an asymmetric focusing of sample particle flow. This approach relies on the high-velocity gradient in the asymmetric focusing of the particle flow to generate a lift force, which plays a dominated role in the particle separation. The larger particles migrate away from the original streamline to the side of the higher relative velocity, while the smaller particles remain close to the streamline. Under high-viscosity (glycerol–water solution) and low-viscosity (PBS) sheath flows, a significant large stroke separation between the smaller (1.0 μm) and larger (9.9 μm) particles was achieved in a sample microfluidic device. We demonstrate that the flow rate and the viscosity difference of the sheath flows have an impact on the interval distance of the particle separation that affects the collected purity and on the focusing distribution of the smaller particles that affects the collected concentration. The interval distance of 293 μm (relative to the channel width: 0.281) and the focusing distribution of 112 μm (relative to the channel width: 0.107) were obtained in the 1042-μm-width separation area of the device. This separation method proposed in our work can potentially be applied to biological and medical applications due to the wide interval distance and the narrow focusing distribution of the particle separation, by easy manufacturing in a simple device.  相似文献   

3.
Rapid, selective particle separation and concentration within the bacterial size range (1–3 μm) in clinical or environmental samples promises significant improvements in detection of pathogenic microorganisms in areas including diagnostics and bio-defence. It has been proposed that microfluidic Dean flow-based separation might offer simple, efficient sample clean-up: separation of larger, bioassay contaminants to prepare bioassay targets including spores, viruses and proteins. However, reports are limited to focusing spherical particles with diameters of 5 μm or above. To evaluate Dean flow separation for (1–3 μm) range samples, we employ a 20 μm width and depth, spiral microchannel. We demonstrate focusing, separation and concentration of particles with closely spaced diameters of 2.1 and 3.2 μm, significantly smaller than previously reported as separated in Dean flow devices. The smallest target, represented by 1.0 μm particles, is not focused due to the high pressures associated with focussing particles of this size; however, it is cleaned of 93 % of 3.2 μm and 87 % of 2.1 μm microparticles. Concentration increases approaching 3.5 times, close to the maximum, were obtained for 3.2 μm particles at a flow rate of 10 μl min?1. Increasing concentration degraded separation, commencing at significantly lower concentrations than previously predicted, particularly for particles on the limit of being focused. It was demonstrated that flow separation specificity can be fine-tuned by adjustment of output pressure differentials, improving separation of closely spaced particle sizes. We conclude that Dean flow separation techniques can be effectively applied to sample clean-up within this significant microorganism size range.  相似文献   

4.
This paper proposes a microfluidic channel for particle focusing that uses a microstructure on the bottom of the channel. Particles can be effectively focused in channels with bottom structures because of microvortex induced by the structure. Microchannels with top structures (top type) and bottom structures (bottom type) were fabricated. The focusing ratios in the focusing region (one-eighth of the channel width) were 86 % in top type and 89 % in bottom type at a flow rate of 1 μl/min. When the flow rate was increased to 5 μl/min, particles in top type were barely focused, whereas particles in bottom type were focused with a focusing ratio of approximately 80 %. We also evaluated the effect of a slanted angle for the microstructures. The comparative experiment was conducted with microstructures fabricated at slanted angle intervals of 20° (20°, 40°, 60°, and 80°) and 10°. The results indicated that the slanted angle (20°) required a small number of microstructures to direct the sample to the focusing region. For microstructures with a 20° slanted angle, the sample was focused after passing through 20 microstructures (10 mm). However, microstructures with an angle of 80° needed over 70 microstructures (over 23 mm) to direct the particle. In this sense, a microchannel with microstructures slanted at 20° is applicable to miniaturized devices. These results show that the microchannel with bottom structures slanted 20° can be used to effectively focus samples with advantages of applying various ranges of flow rates and miniaturizing devices.  相似文献   

5.
A new microfluidic device for fast and high-throughput particle focusing is reported. The particle focusing is based on the combination of inertial lift force effect and centrifugal force effect generated in a microchannel with a series of repeated asymmetric sharp corners on one side of the channel wall. The inertial lift force induces two focused particle streams in the microchannel, and the centrifugal force generated at the sharp corner structures tends to drive the particles laterally away from the corner. With the use of a series of repeated asymmetric sharp corner structures, a single and highly focused particle stream was achieved near the straight channel wall at a wide range of flow rate. In comparison with other hydrodynamic particle focusing methods, this method is less sensitive to the flow rate and can work at a higher flow rate (up to 700 μL/min) and Reynolds number (Re = 129.5). With its simple structure and operation, and high throughput, this method can be potentially used in particle focusing processes in a variety of lab-on-a-chip applications.  相似文献   

6.
Pumping in microfluidic devices is an important issue in actuating fluid flow in microchannel, especially that capillary force has received more and more attractions due to the self-driven motion without external power input. However, less 2D simulation was done on the capillary flow in microchannel especially the meander microchannel which can be used for mixing and lab-on-a-chip (LOC) application. In this paper, the numerical simulation of the capillary flow in the meander microchannel has been studied using computer fluid dynamic simulation software CFD-ACE+. Different combinations of channel width in the X-direction denoted as Wx and Y-direction denoted as Wy were designed for simulating capillary flow behavior and pressure drop. The designed four types of meander microchannels (Wx × Wy) were 100 × 100 μm, 100 × 200 μm, 50 × 200 μm, and 50 × 400 μm. In this simulation results, it is found that the capillary pumping speed is highly depending on the channel width. The large speed change occurs at the turning angle of channel width change from Wx to Wy. The fastest pumping effect is found in the meander channel of 100 × 100 μm, which has an average pumping speed of 0.439 mm/s. The slowest average flow speed of 0.205 mm/s occurs in the meander channel of 50 × 400 μm. Changing the meander channel width may vary the capillary flow behavior including the pumping speed and the flow resistance as well as pressure drop which will be a good reference in designing the meander microchannels for microfluidic and LOC application.  相似文献   

7.
The importance of electrokinetics in microfluidic technology has been growing owing to its versatility and simplicity in fabrication, implementation, and handling. Alternating-current electroosmosis (ACEO), which is the motion of fluid due to the ion movement by an interaction between AC electric field and an electrical double layer on the electrode surface, has a potential for a particle concentration method to detecti rare samples flowing in a microchannel. This study investigates an improved ACEO-based particle concentration by cascade electrokinetic approach. Flow field induced by ACEO and accumulation behavior of particles were parametrically measured to discuss the concentrating mechanism. The accumulation of particles by ACEO can be explained by a balance between the attenuating electroosmotic flow to transport particles and the inherent diffusive motion of the particles, which is hindered due to the near-wall location. Although a parallel double-gap electrode geometry enables particles to be collected at the center of electrode very sharply, it has scattering zones with accumulated particles at sidewalls of the channel. This drawback can be overcome by applying sheath flow or introducing cascade electrode pattern upstream of the focusing zone. As a result, total concentration efficiency was 98.4 % for all the particles flowing in the cascade device. The resultant concentrated particles exist on the electrode surface within 5 μm, and three-dimensional concentration of particle with the concentration factor as large as 700 is possible using a monolithic channel, co-planar electrode, and sheathless solution feeding. This cascade electrokinetic method provides a new and effective preconcentrator for ultra-sensitive detection of rare samples.  相似文献   

8.
Inertial microfluidics can separate microparticles in a continuous and high-throughput manner, and is very promising for a wide range of industrial, biomedical and clinical applications. However, most of the proposed inertial microfluidic devices only work effectively at a limited and narrow flow rate range because the performance of inertial particle focusing and separation is normally very sensitive to the flow rate (Reynolds number). In this work, an innovative particle separation method is proposed and developed by taking advantage of the secondary flow and particle inertial lift force in a straight channel (AR = 0.2) with arc-shaped groove arrays patterned on the channel top surface. Through the simulation results achieved, it can be found that a secondary flow is induced within the cross section of the microchannel and guides different-size particles to the corresponding equilibrium positions. On the other hand, the effects of the particle size, flow rate and particle concentration on particle focusing and separation quality were experimentally investigated. In the experiments, the performance of particle focusing, however, was found relatively insensitive to the variation of flow rate. According to this, a separation of 4.8 and 13 µm particle suspensions was designed and successfully achieved in the proposed microchannel, and the results show that a qualified particle separation can be achieved at a wide range of flow rate. This flow rate-insensitive microfluidic separation (filtration) method is able to potentially serve as a reliable biosample preparation processing step for downstream bioassays.  相似文献   

9.
We have previously argued that an optical sensor combined total analysis system (TAS) is one of the indispensable functional components needed to realize a “ubiquitous human healthcare” system. To achieve this goal, we have proposed a fundamental structure for illuminating a minute cell or particle running along a microfluidic channel using a flat waveguide construction. It is desirable that the TAS light source should be arranged as close to the specimen flow as possible in order to acquire the necessary optical properties; hence, artificial defects formed on the surface of a flat light waveguide are considered to be a promising candidate for realizing the arbitrary-shaped light source for a highly functional optical TAS structure. Based on this idea, we fabricated a structure, constructing a flat and square light source consisting of rectangular solids, sub-micrometer in size, with a 1-μm thick and a 12-μm wide light waveguide core. We successfully trial-manufactured an optical TAS chip with a fluidic channel containing a 14 × 10-μm cross section, and an extremely flat light waveguide core. We repeatedly confirmed that the defect array could function as an approximately square light source when a 650-nm wavelength laser power was carefully introduced. Furthermore, we developed a hybrid numerical calculation method base on the finite-difference, time-domain method together with the beam propagation method. Utilizing this hybrid method, we evaluated the optical response when a particle runs across the light source while changing the aperture length of a shading mask to obtain signals with both higher intensity and shorter full width at half maximum. The numerical results were compared with experimental results obtained using an image acquisition system, and demonstrated good qualitative accord.  相似文献   

10.
An interesting hydrogen sensor based on a high electron mobility transistor (HEMT) device with a Pd–oxide–In0.49Ga0.51P gate structure is fabricated and demonstrated. The hydrogen sensing characteristics including hydrogen detection sensitivity and transient responses of the studied device under different hydrogen concentrations and temperature are measured and studied. The hydrogen detection sensitivity is related to a change in the contact potential at the Pd/insulator interface. The kinetic and thermodynamic properties of hydrogen adsorption are also studied. Experimentally, good hydrogen detection sensitivities, large magnitude of current variations (3.96 mA in 9970 ppm H2/air gas at room temperature) and shorter absorption response time (22 s in 9970 ppm H2/air gas at room temperature) are obtained for a 1.4 μm × 100 μm gate dimension device. Therefore, the studied device provides a promise for high-performance solid-state hydrogen sensor, integrated circuit (IC) and micro electro-mechanical system (MEMS) applications.  相似文献   

11.
In this paper, a spiral microchannel was fabricated to systematically investigate particle dynamics. The focusing process or migration behavior of different-sized particles in the outlet region was presented. Specifically, for focused microparticles, quantitative characterization and analysis of how particles migrate towards the equilibrium positions with the increase in flow rate (De = 0.31–3.36) were performed. For unfocused microparticles, the particle migration behavior and the particle-free region’s formation process were characterized over a wide range of flow rates (De = 0.31–4.58), and the emergence of double particle-free regions was observed at De ≥ 3.36. These results provide insights into the design and operation of high-throughput particle/cell filtration and separation. Furthermore, using the location markers pre-fabricated along with the microchannel structures, the focusing or migration dynamics of different-sized particles along the spiral microchannel was systematically explored. The particle migration length effects on focusing degree and particle-free region width were analyzed. These analyses may be valuable for the optimization of microchannel structures. In addition, this device was successfully used to efficiently filter rare particles from a large-volume sample and separate particles of two different sizes according to their focusing states.  相似文献   

12.
A simple, rapid and effective method for the determination of copper (II) in water on a PDMS microfluidic chip with chemiluminescence (CL) detection is presented. The CL reaction was based on oxidation of 1,10-phenanthroline by hydrogen peroxide in basic aqueous solution. Polydimethylsiloxane (PDMS) was chosen as material for fabricating the microfluidic chip with two steps lithography method. Optimized reagents conditions were found to be 6.0 × 10?5 mol/L 1,10-phenanthroline, 1.2 × 10?3 mol/L hydrogen peroxide, 6.5 × 10?2 mol/L sodium hydroxide and 2.0 × 10?3 mol/L Hexadecyl trimethyl ammonium Bromide (CTMAB). In the continuous flow injection mode the system can perform fully automated detection with a reagent consumption of only 3.4 μL each time. The linear range of the Cu (II) ions concentration was 1.0 × 10?8 mol/L to 1.0 × 10?4 mol/L, and the detection limit was 9.2 × 10?9 mol/L with the S/N ratio of 3. The relative standard deviation was 2.8 % for 1.0 × 10?6 mol/L Cu (II) ions (n = 8). The most notable features of the detection method are simple operation, rapid detection and easy fabrication of the microfluidic chip.  相似文献   

13.
A space-resolved in situ measurement technique based on laser Raman spectroscopy with high detection sensitivity is described. This method allows the simultaneous detection of the concentrations of dissolved molecular oxygen and of hydrocarbons as well as oxidation products in organic liquids in a microchannel during reaction. It can be used as a new tool for detailed kinetic studies of liquid-phase reaction. Raman spectra are produced using an argon ion laser at 488 nm with a continuous optical power of 100 mW. This radiation is coupled into a microscope and a microchannel. The arising Raman stray light is detected with a spectrometer and a sensitive CCD camera. Special optics were used to collect as much light as possible on the CCD detector. This results in high signals and low noise levels. In order to demonstrate the usefulness of the system, cyclohexane oxidation by oxygen was investigated. In a feasibility study for the products of the cyclohexane oxidation, a limit of detection of 0.05 % m/m for cyclohexanol and 0.01 % m/m for cyclohexanone was achieved. Molecular oxygen dissolved in cyclohexane could be detected at the relevant concentration ranges for carrying out the oxidation of cyclohexane with a limit of detection of 0.01 % m/m. An optically transparent microchannel reactor was built, which can be used up to temperatures of 503 K and pressures of 8 MPa. With this reactor and the in situ measurement technique, space-resolved studies with a measuring volume of 5 μm × 5 μm × 38 μm can now be realized. The spectral selectivity and sensitivity of the measurement technique applied to cyclohexane oxidation, and the characteristics of the spatially resolved measurement technique are discussed.  相似文献   

14.
We present a new 3D dielectrophoresis-field-flow fraction (DEP-FFF) concept to achieve precise separation of multiple particles by using AC DEP force gradient in the z-direction. The interlaced electrode array was placed at the upstream of the microchannel, which not only focused the particles into a single particle stream to be at the same starting position for further separation, but also increased the spacing between each particle by the retard effect to reduce particle–particle aggregation. An inclined electrode was also designed in back of the focusing component to continuously and precisely separate different sizes of microparticles. Different magnitudes of DEP force are induced at different positions in the z-direction of the DEP gate, which causes different penetration times and positions of particles along the inclined DEP gate. 2, 3, 4, and 6?μm polystyrene beads were precisely sized fractionation to be four particle streams based on their different threshold DEP velocities that were induced by the field gradient in the z-direction when a voltage of 6.5?Vp–p was applied at a flow rate of 0.6?μl/min. Finally, Candida albicans were also sized separated to be three populations for demonstrating the feasibility of this platform in biological applications. The results showed that a high resolution sized fractionation (only 25% size difference) of multiple particles can be achieved in this DEP-based microfluidic device by applying a single AC electrical signal.  相似文献   

15.
In this article, we present an optothermal analyte preconcentration method based on temperature gradient focusing. This approach offers a flexible, noninvasive technique for focusing and transporting charged analytes in microfluidics using light energy. The method uses the optical field control provided by a digital projector as established for particle manipulation, to achieve analogous functionality for molecular analytes for the first time. The optothermal heating system is characterized and the ability to control of the heated zone location, size, and power is demonstrated. The method is applied to concentrate a sample model analyte, along a microcapillary, resulting in almost 500-fold local concentration increase in 15 min. Optically controlled upstream and downstream transport of a focused analyte band is demonstrated with a heater velocity of ~170?μm/min.  相似文献   

16.
The numerical solution of two-dimensional flow in a branching channel   总被引:1,自引:0,他引:1  
A numerical method for treating the steady two-dimensional flow of a viscous incompressible fluid in a branching channel is given. The Navier-Stokes equations are written in terms of the stream function and vorticity, giving the usual two coupled partial differential equations. These equations are solved using the difference scheme of Dennis and Hudson [Proc. 1st Cong. Num. Met. Laminar and Turbulent Flow, p. 69. Pentech Press, London (1978)] and a solution to the resulting large system of algebraic equations is obtained using a Gauss-Seidel iteration technique. The upstream and downstream boundary conditions are discussed and a logarithmic transformation is applied to the coordinate measuring distance downstream in order to extend the numerical solution far enough downstream. Two methods are presented for dealing with the singularity in the vorticity at the sharp corners where the channel bifurcates. The numerical solution is obtained for three separate grid sizes for two different widths of channel downstream of the channel branch. The effect on flow separation of both the variation of Reynolds number and the relative channel width upstream and downstream of the branch are discussed.  相似文献   

17.
Inertial microfluidics has emerged recently as a promising tool for high-throughput manipulation of particles and cells for a wide range of flow cytometric tasks including cell separation/filtration, cell counting, and mechanical phenotyping. Inertial focusing is profoundly reliant on the cross-sectional shape of channel and its impacts on not only the shear field but also the wall-effect lift force near the wall region. In this study, particle focusing dynamics inside trapezoidal straight microchannels was first studied systematically for a broad range of channel Re number (20 < Re < 800). The altered axial velocity profile and consequently new shear force arrangement led to a cross-lateral movement of equilibration toward the longer side wall when the rectangular straight channel was changed to a trapezoid; however, the lateral focusing started to move backward toward the middle and the shorter side wall, depending on particle clogging ratio, channel aspect ratio, and slope of slanted wall, as the channel Reynolds number further increased (Re > 50). Remarkably, an almost complete transition of major focusing from the longer side wall to the shorter side wall was found for large-sized particles of clogging ratio K ~ 0.9 (K = a/Hmin) when Re increased noticeably to ~ 650. Finally, based on our findings, a trapezoidal straight channel along with a bifurcation was designed and applied for continuous filtration of a broad range of particle size (0.3 < K < 1) exiting through the longer wall outlet with ~ 99% efficiency (Re < 100).  相似文献   

18.
Inertial microfluidics has become one of the emerging topics due to potential applications such as particle separation, particle enrichment, rapid detection and diagnosis of circulating tumor cells. To realize its integration to such applications, underlying physics should be well understood. This study focuses on particle dynamics in curvilinear channels with different curvature angles (280°, 230°, and 180°) and different channel heights (90, 75, and 60 µm) where the advantages of hydrodynamic forces were exploited. We presented the cruciality of the three-dimensional particle position with respect to inertial lift forces and Dean drag force by examining the focusing behavior of 20 µm (large), 15 µm (medium) and 10 µm (small) fluorescent polystyrene microparticles for a wide range of flow rates (400–2700 µL/min) and corresponding channel Reynolds numbers. Migration of the particles in lateral direction and their equilibrium positions were investigated in detail. In addition, in the light of our findings, we described two different regions: transition region, where the inner wall becomes the outer wall and vice versa, and the outlet region. The maximum distance between the tight particle stream of 20 and 15 µm particles was obtained in the 90 high channel with curvature angle of 280° at Reynolds number of 144 in the transition region (intersection of the turns), which was the optimum condition/configuration for focusing.  相似文献   

19.
A novel dual-mass resonant output micromechanical gyroscope is proposed which utilizes resonant sensing as the basis for Coriolis force detection instead of displacement sensing. It can overcome the shortcoming of single-mass resonant output micromechanical gyroscope and can reduce the common mode acceleration error by using a dual-mass topology structure and lever differential mechanism. The structure and operating principle of the device are introduced. Moreover, some important theoretical analyses of the gyroscope are provided in detail. The analytical results have shown that the resonant frequencies of vibrating mass and double-ended tuning fork resonators are 3.153 and 62.853 kHz. The device has a frequency sensitivity of 12.535 Hz/deg/s and a mechanical noise floor of $ 7.957\deg /{\text{h}}/\sqrt {{\text{Hz}}} A novel dual-mass resonant output micromechanical gyroscope is proposed which utilizes resonant sensing as the basis for Coriolis force detection instead of displacement sensing. It can overcome the shortcoming of single-mass resonant output micromechanical gyroscope and can reduce the common mode acceleration error by using a dual-mass topology structure and lever differential mechanism. The structure and operating principle of the device are introduced. Moreover, some important theoretical analyses of the gyroscope are provided in detail. The analytical results have shown that the resonant frequencies of vibrating mass and double-ended tuning fork resonators are 3.153 and 62.853 kHz. The device has a frequency sensitivity of 12.535 Hz/deg/s and a mechanical noise floor of 7.957deg/\texth/?{\textHz} 7.957\deg /{\text{h}}/\sqrt {{\text{Hz}}} in air. The finite element simulation results verify the accuracy of analytical algorithms. The common mode acceleration error of device can be reduced by 97.6%. The device is fabricated by SOG (Silicon on Glass) micro fabrication technology. Some important performances are measured by experimental method. The micromechanical gyroscope can be used to estimate the rotation rate by further implementing the signal processing electronics.  相似文献   

20.
We present the design considerations of an autonomous wireless sensor and discuss the fabrication and testing of the various components including the energy harvester, the active sensing devices and the power management and sensor interface circuits. A common materials platform, namely, nanowires, enables us to fabricate state-of-the-art components at reduced volume and show chemical sensing within the available energy budget. We demonstrate a photovoltaic mini-module made of silicon nanowire solar cells, each of 0.5 mm2 area, which delivers a power of 260 μW and an open circuit voltage of 2 V at one sun illumination. Using nanowire platforms two sensing applications are presented. Combining functionalised suspended Si nanowires with a novel microfluidic fluid delivery system, fully integrated microfluidic–sensor devices are examined as sensors for streptavidin and pH, whereas, using a microchip modified with Pd nanowires provides a power efficient and fast early hydrogen gas detection method. Finally, an ultra-low power, efficient solar energy harvesting and sensing microsystem augmented with a 6 mAh rechargeable battery allows for less than 20 μW power consumption and 425 h sensor operation even without energy harvesting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号