首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 156 毫秒
1.
中子输运计算界面流方法的数学共扼方程   总被引:1,自引:1,他引:0  
张颖  陈伟  陈立新 《核动力工程》2005,26(2):97-101
以子区内中子源为常源近似条件下的中子积分输运方程为前向方程,推导了中子积分输运方程界面流算法在六角形几何情况下的数学共扼方程;介绍了该数学共扼方程求解的内、外迭代策略,并对前向方程计算程序TPHEX进行了改造,得到了常源近似情况下数学共扼方程计算程序TFHEX_J0。通过算例校验表明TPHEX_J0与TPHEX程序所计算的系统本征值符合良好,TFHEX_J0程序的计算结果是可靠的。  相似文献   

2.
压水堆六角形燃料组件均匀化 计算软件包TPFAP-HEX   总被引:2,自引:1,他引:1  
介绍了所研制的具有工程实用价值的压水堆六角形燃料组件均匀化计算软件包。该组件中子空间能谱的计算采用穿透概率法与响应矩阵法相结合的方法,在六角形几何内求解中子积分输运方程。在此方法中,栅元内中子源采用空间线性或二次近似,栅元表面中子通量密度角分布采用简化6P  相似文献   

3.
殷晗  张斌  刘晓晶  张滕飞 《核技术》2020,43(6):48-54
精确高效的中子学计算方法是快堆概念设计和方案优化的必备条件。本研究提出一种积分形式的变分节块法以求解六角形节块几何下的三维多群中子输运方程。该方法采用积分方法处理节块内部中子角通量密度,采用偶宇称球谐函数处理节块表面中子角通量密度,同时采用准反射边界条件方法减少节块表面的角度自由度数目,以节省计算成本。针对TAKEDA-4基准题的验证结果表明:相比于传统基于球谐函数离散的变分节块法,本方法在低阶角度近似下可将特征值计算偏差降低2~5倍;在高阶角度近似如P7近似下,加速算法能够实现33倍的加速比。研究建立的积分中子输运变分节块法可用于六角形组件几何快堆的高效、精确模拟。  相似文献   

4.
讨论了用界面流方法计算二维六角形组件中子通量分布。从积分输运方程出发,导出了一种简便的数学模型,在子区内采用平源通量近似,并假设中子发射和散射为各向同性。在子区表面上,中子通量的空间分布为常数,中子角通量分布通过伴随勒让特多项式展开表示,采用DP_1近似。推导出界面流方程组,给出了泄漏、穿透几率矩阵及其矩阵元素的表达式及计算方法。根据提出的数学模型,编制了TPHEX程序,对二维六角形组件进行了计算,本程序可用于水堆六角形燃料组件计算。  相似文献   

5.
离散纵标节块法是一种求解六角形中子输运方程的有效方法。本文基于六角形横向积分离散纵标方程,解析得到横向积分通量出射通量与入射通量的关系,并根据类似于扩散方法的六角形输运节块中子平衡方程形式,得到了一种离散纵标六角形节块法数值迭代策略。由于离散纵标法收敛速度较慢,本文根据粗网有限差分(CMFD)技术导出离散纵标六角形CMFD加速方法。数值计算结果表明,该CMFD加速技术能取得约16倍的加速效果。  相似文献   

6.
多功能栅格计算程序SONG采用特征线方法(MOC)及粗网有限差分(CMFD)加速方法进行中子输运计算,具备在数据库能群结构下全组件精细几何计算能力。同时具有与MOC相适应的几何预处理模块,采用基于组件的模块化射线追踪,可处理方形、六角形组件及棒状、板状燃料元件。通过模块化的流程与数据结构设计,开发形成了几何无关的MOC输运求解模块,同时形成了可扩展的组件几何预处理模块。不同形状组件的几何处理模块与输运求解模块具有统一的数据接口。通过相关问题的计算表明,SONG程序具备多几何组件处理能力,同时输运计算结果具有较好的精度、效率及稳定性。  相似文献   

7.
通过理论分析给出了中子积分输运动态方程 ,发展了中子积分输运理论 ,使中子积分输运理论不仅可以用来分析反应堆栅格非均匀效应和计算反应堆参数等稳态问题 ,而且还可以处理反应堆动态问题。中子积分输运动态方程是一个多群多点 (一个空间分区为一点 )中子动态方程 ,在单群情况下就是多点反应堆动态方程。多点动态方程可以用来分析与空间有关的反应堆动态问题。介绍了中子积分输运动态方程的应用个例 ,通过中子积分输运动态方程分析了中国先进研究堆中子代时间的构成 (刚性和柔性中子代时间 )问题。  相似文献   

8.
节块格林函数法的微扰计算   总被引:3,自引:2,他引:1  
李富  王亚奇 《核动力工程》1999,20(2):103-105
在反应堆物理设计和分析时,经常要进行微扰计算,以快速分析堆芯中子截面扰动下反应性的变化量。本文从微扰计算的普遍公式出发,给出了节块格林函数法(NGFM)下微扰计算的具体公式。通过对比验算,验证了NGFM下的微扰公式,并且证明微扰计算需要的是节块法的数学共轭解而不是物理共轭解。  相似文献   

9.
堆芯热通道因子是堆芯热工设计及安全分析的一项重要参数,确定热通道因子需用中子学计算给出较准确的燃料组件内元件棒功率分布。在三维六角形几何节块扩散理论基础上,使用多项式重构的方法计算节块内中子通量密度分布和功率密度分布。针对快堆六角形燃料组件的特点,用小六角形积分的方法计算组件内元件棒功率,得到组件内各元件棒功率分布。在NAS程序基础上,编制了元件棒功率分布计算模块NAS PIN。通过与蒙特卡罗程序的校验可发现,二者计算结果符合较好,计算精度可满足工程设计的需要。  相似文献   

10.
为了求解三维非结构几何中子输运方程,研究了基于三棱柱的穿透概率方法.三棱柱子区内部中子源采用平源分布近似,子区界面中子角注量率空间分布采用均匀分布近似,角度分布采用简化P1近似.在此基础上编制了适应于三维几何的中子输运问题求解的程序TPMTD,并对三维Takeda输运基准问题进行了校算,计算结果与参考值吻合良好.  相似文献   

11.
为实现对复杂几何、复杂能谱组件的精细计算,提出了一种基于特征线的超细群慢化方程求解方法。通过耦合特征线法中的固定源计算,在共振能量范围内建立超细群慢化方程,通过精细能谱获得复杂结构下的共振自屏截面。对典型压水堆栅元问题、带有温度分布的栅元问题、燃料内部存在不均匀性的栅元问题以及板状燃料组件问题进行了计算。结果表明,基于特征线的超细群慢化方程求解方法可精确计算复杂几何、复杂能谱问题,为共振计算提供基准。  相似文献   

12.
基于中子积分输运理论,应用综合界面流和碰撞几率技巧的块方法,导出了处理三区非均匀栅元结构的二维(X-Y)几何多群中子输运问题的数值模型。即对于由若干栅元组成的按X-Y几何排列的堆芯结构,对每一类栅元剖分为圆柱形元件(如燃料棒、控制棒、可燃毒物棒等)、包壳和慢化剂三个均匀区,用碰撞几率(CP或PIJ)方法计算各区的中子通量分布;对于相邻栅元用DP1近似的中子流来耦合;因此,块方法具有精度高、速度快、能灵活处理各种几何问题的优点,是目前动力堆组件计算最有前途的方法之一。基于块方法基本理论,发展了三区栅元模型,导出了计算方法,编制了FORTRAN计算机程序。为验证其精度和适用性,对两个例题进行了计算,并与其它程序的计算结果进行了比较,证明功率分布和本征值均符合较好。  相似文献   

13.
为提高确定论全堆芯中子输运程序的适用性,开发了通用型中子输运程序 VITAS。针对TAKEDA3 基准题(矩形组件)、TAKEDA4 基准题(六角形组件)、Dodds 基准题(R-Z 几何)和 C5G7-TD5 基准题(压水堆高保真计算)的验证结果表明,高阶的空间和角度基函数能够使结果稳定地向参考解渐进收敛,达到与多群蒙卡相当的计算精度水平。与参考解相比,TAKEDA3 基准题有效增殖系数(keff)偏差低于 60pcm(1pcm=10-5),控制棒价值偏差为-3pcm,中子通量密度分布均方根(RMS)偏差为 1.03%;TAKEDA4 基准题 keff偏差低于 20pcm,控制棒价值偏差为 32pcm,中子通量密度分布 RMS 偏差为 0.70%;Dodds 基准题的功率最大偏差低于 1%;C5G7-TD5 基准题的功率偏差低于 0.9%。本文研究表明 VITAS 有望成为一套精确求解中子输运问题的通用型计算工具。  相似文献   

14.
Mixed-dual formulations of the finite element method were successfully applied to the neutron diffusion equation, such as the Raviart–Thomas method in Cartesian geometry and the Raviart–Thomas–Schneider in hexagonal geometry. Both methods obtain system matrices which are suitable for solving the eigenvalue problem with the preconditioned power method. This method is very fast and optimized, but only for the calculation of the fundamental mode. However, the determination of non-fundamental modes is important for modal analysis, instabilities, and fluctuations of nuclear reactors. So, effective and fast methods are required for solving eigenvalue problems. The most effective methods are those based on Krylov subspaces projection combined with restart, such as Krylov–Schur. In this work, a Krylov–Schur method has been applied to the neutron diffusion equation, discretized with the Raviart–Thomas and Raviart–Thomas–Schneider methods.  相似文献   

15.
In the design of fast reactor core with higher burnup and higher linear power, prediction accuracy of burnup history of fuel pin should be upgraded so as to assure fuel integrity without extra design margin under increased neutron fluence and burnup. A method is studied to predict fuel pin-wise power and its burnup history in fast reactors accurately based on an analytic solution of diffusion theory equation on hexagonal geometry with boundary condition from core calculation by finite-differenced diffusion calculation code. The present method is applied to a fast reactor core model, and its accuracy in predicting fuel pin power is tested. The result is compared with the reference solution by the finite difference calculation with very fine mesh. It is found that the present method predicts the power peaking factors in fuel assemblies accurately. The fuel pin-wise nuclide depletion calculation is also done using neutron fluxes for each fuel pin. The result shows that the fuel pin-wise depletion calculation is very important in predicting the burnup history of the fuel assembly in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号