首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
《江苏水利》2010,(10):49-49
通过调研、CFD数值仿真和物理模型试验,对特低扬程双向泵装置进行全面、系统和深入的研究,提出了特低扬程双向泵装置选型和设计的方法及技术路线,推荐平面轴伸泵和潜水贯流泵作为城市防洪泵站建设的基本泵型。以苏州市城市防洪泵站工程为依托,对推荐的泵型型线进行优化设计,  相似文献   

2.
水泵叶轮直径对低扬程泵装置水力性能的影响   总被引:1,自引:0,他引:1  
采用数值计算的方法,分别计算了具有不同水泵叶轮直径的立式轴流泵装置和灯泡贯流泵装置的流道水力损失,比较了水泵叶轮直径对流道水力损失的影响;根据叶片泵的相似律,分析了在一定设计流量条件下水泵叶轮直径与nD值的关系以及对水泵选型设计的影响。结果表明:选取较大的水泵叶轮直径将显著提高流道效率和泵装置效率;"增径降速"与降低nD值是一致的;在泵装置扬程较低的情况下,选取较小的nD值便于选用到水力性能较好的轴流泵水力模型。  相似文献   

3.
为了合理确定我国低扬程泵装置主要工况水力性能的考核指标,以适应我国大型低扬程泵站建设事业不断发展的需要,提出建立在水泵模型同台测试试验数据和流道优化水力设计研究成果基础上的推算低扬程泵装置效率的基本方法,即:泵装置效率由泵段效率和流道效率的乘积得到,其中,泵装置中的泵段效率由同台测试结果经修正后得到,流道效率由流道水力损失及泵装置扬程计算得到;应用该方法推算了大型泵站贯流泵装置和立式泵装置模型主要工况的效率考核指标。  相似文献   

4.
低扬程泵装置优化水力设计的关键问题   总被引:2,自引:0,他引:2       下载免费PDF全文
对低扬程泵装置的优化水力设计问题进行了较为深入的研究.将低扬程泵装置效率分解为水泵效率和流道效率两个方面,讨论了泵装置中泵段的概念和泵段效率的修正等问题,分析了流道水力损失对流道效率及泵装置效率的影响,通过实例说明了流道内的流速和流态对流道水力损失的影响,得到以下结论:在低扬程条件下,尽可能减小流道水力损失是提高泵装置效率的关键;减小流道水力损失的关键是降低流道内的流速和改善流道内的流态,其途径主要包括选择水力性能最优的泵装置型式和流道型式、适当降低水泵的nD值、选择更优秀的水泵水力模型、适当放宽流道控制尺寸、对流道型线进行充分的优化水力设计等.  相似文献   

5.
低扬程泵装置流动特性及水力性能研究进展   总被引:4,自引:0,他引:4       下载免费PDF全文
综述近年来低扬程泵装置流动特性及水力性能方面的研究进展,分别从进出水流道、叶轮和整体泵装置等方面对目前研究成果进行分析,指出为了更真实地描述泵装置流动与性能研究,应树立从装置的角度去认识泵装置及其各过流部件的内、外特性的思想。目前需要在泵装置内部三维流动测量和低扬程泵装置选型方法两方面作重点研究。  相似文献   

6.
设计规范要求"在平均扬程下水泵应在高效区工作"与"最高扬程时应保证稳定运行",对于最高扬程与平均扬程相差较大的特低扬程泵站,两者往往较难兼顾,该类泵站的选型难度很大。针对此类泵站,以新村枢纽为典型案例,为寻求高效率、易维护、低造价的泵型,进行了多方案比较,对电机调速、定速方案进行了分析,最终选择了竖井贯流泵及其定速方案。结果表明:根据工程特点,泵站选型时不必拘泥于平均扬程下必须在最高效区;运行中提前开泵、预降内河水位,适当提高实际扬程,延长水泵位于高效区运行时间,即能达到节能目的。泵装置水力性能优化及模型试验表明:泵装置的综合水力性能优良,水泵选型和流道设计合理;模型装置马鞍区峰点扬程大于2.8 m,满足泵站最高扬程稳定要求。溧阳城市防洪工程三大枢纽及新沟河延伸拓浚工程遥观南枢纽泵站均采用此泵型,工程于2013年起陆续投入使用,从运行效果看,机组运行状态良好。  相似文献   

7.
低扬程立式泵进水流道基本流态及水力性能的比较   总被引:1,自引:0,他引:1  
采用数值计算和模型试验的方法分别研究了低扬程立式泵装置常用的肘形、钟形和簸箕形等三种形式进水流道的基本流态,给出了表达这三种形式进水流道水力性能的主要指标。结果表明:三种形式进水流道都可为水泵叶轮室进口提供良好的进水流态,但流道水力损失差别较大;肘形进水流道流态简单、水力损失小,钟形和簸箕形进水流道的流态较复杂、水力损失较大;对于年运行时数较多的大型泵站,宜优先选用水力性能最好的肘形进水流道。  相似文献   

8.
<正>1低扬程泵站的特点(1)低扬程泵站采用轴流泵或斜流泵,运行扬程低,流量大,目前国内已做到模型泵D=300mm,比转速ns=1600,设计扬程2.5m,汽蚀比转速nc1000,最高点效率η80%。  相似文献   

9.
通榆河北延送水工程灌北泵站和善南泵站扬程低且年运行时间较长,为得到较高的泵装置效率,采用了单泵设计流量为10m3/s、叶轮直径为2m的卧式潜水贯流泵装置。采用三维湍流流动数值计算和模型试验的方法,分别对这种型式泵装置的内外水力特性进行了研究,表明卧式潜水贯流泵装置具有水流平顺、均匀和流道水力损失小的优点,水力性能十分优异。  相似文献   

10.
采用数值计算和模型试验的方法对低扬程立式轴流泵虹吸式和直管式2种不同形式的出水流道进行了比较,揭示了这2种出水流道的基本流态,测试了这2种形式出水流道的水力损失。结果表明:在低扬程的条件下,虹吸式出水流道内的水流转向更为有序、扩散更为平缓、水力损失更小,对于年运行时数较多的大型低扬程泵站,在上游水位变幅允许的条件下,应优先选用水力性能较好的虹吸式出水流道。  相似文献   

11.
水电站进水口水力特性数值模拟研究   总被引:3,自引:0,他引:3  
结合二滩水电站、小湾水电站、洪家渡水电站和天生桥一级水电站,采用k-ε紊流模型对其进水口水力特性进行了三维数值模拟,对进水口水头损失、流速分布及流态等方面进行了总结。数值模拟结果得到了模型试验结果的验证。  相似文献   

12.
龙抬头水电站泄洪洞水力特性研究   总被引:2,自引:0,他引:2  
针对青海省某大型水电站龙抬头泄洪洞工程,采用计算流体力学软件Flow-3D,应用RNG k-ε紊流模型、VOF方法,对泄洪洞整体水力特性进行三维数值模拟研究,得到泄洪洞闸室、龙抬头段、挑坎等部位水流流态、壁面压强、水流流速等水力参数。将部分数值模拟结果同整体水工模型试验实测结果进行比较,两者吻合良好。数值模拟及试验成果显示,泄洪洞闸室合理设置突扩突跌设施可有效掺气、利于减蚀,龙抬头段水流流态平稳无突变、壁面无负压;而且,扭曲斜切挑坎有利于挑射水流归槽,可避免水流冲刷对向河岸,泄洪洞体型设计合理。研究表明,数值模拟与理论研究结果接近,可靠度较高,可为类似工程设计提供参考。  相似文献   

13.
采用水力模拟的方法对两个不同结构尺寸的污水泵站高位井的水流流态、泥沙淤积及水头损失等进行了模型试验.试验结果表明,出水池长度较长,收缩角较小的高位井中的水流流态较好,但池内泥沙淤积程度较重.随着水泵开泵台数的增加和进水流量的加大,可改善池内的泥沙淤积.  相似文献   

14.
通过对阶梯溢洪道进行模型试验研究,验证了侧堰的过流能力,研究了典型断面流速、压力及水深在不同工况下的变化规律。试验结果表明:侧堰的过流能力满足设计要求,在各工况下,水深小于边墙设计高度,阶梯段各点空化数小于初生空化数,不会引起空蚀破化。根据原设计方案使用FLUENT对阶梯溢洪道进行数值模拟实验,并将数值模拟计算结果与模型试验结果进行对比分析,发现数值模拟计算结果与物理模型试验结果吻合良好,为深入分析阶梯溢洪道陡坡流场提供可能,同时,为体型结构优化提供技术保障。  相似文献   

15.
将泵站从启动至正常运行分为4个阶段,进行泵站启动扬程的分析计算。指出影响泵站启动扬程的主要因素有泵站启动时进水池和出水池的水位差、出水流道工作闸门的开启速度、出水流道的结构布置。通过对贯流式泵站启动过程进行分析,运用水力学原理,就泵站启动扬程的主要影响因素提出一种分析计算方法。以淮安第三抽水泵站为例进行泵站启动扬程分析及计算,所得结果与泵站的实际启动运行情况基本吻合。  相似文献   

16.
王兴勇  郭军  刘树坤  陈兴茹 《水利学报》2007,38(11):1290-1295
生态型鱼巢砖是一种新型的河道护岸构件,本文以它的水力特性为研究对象,根据几种常见鱼类的水流习性提出了鱼巢砖的基本结构尺寸,然后通过模型试验和数值计算分析了鱼巢砖的三种连接形式在不同主槽流速下的流场分布以及它们各自不同的适用性。两种研究方法的成果基本一致,从水力特性方面说明这种鱼巢砖能够为鱼类提供一个安全的避难场所,有助于河道生物多样性的保护,也为鱼巢砖以后进一步的体型优化和推广应用提供了理论基础。  相似文献   

17.
叶永  雷未  罗威 《人民长江》2017,48(11):68-71
水泵作为一种通用机械,广泛地运用于国民经济发展的各个环节,在农业和水利工程中尤为常用。对于高扬程、长距离的泵站工程来说,水泵能否高效稳定地运行是整个工程的关键核心技术问题。对某高扬程、大流量引水泵站工程,水泵选型时,各类泵型的技术参数及特点进行了综合考虑和分析,同时,对每种泵型所产生的经济成本进行了分析评价,根据分析、比选结果,从而确定了最适宜该工程的一种设计方案。该引水泵站的建成,有效地缓解了当地乡镇水资源短缺的矛盾,提高了乡镇农业生产、生活供水保证率,同时也验证了所选方案的正确性。研究成果可为类似工程的设计提供借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号