首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fas ligand and tumor necrosis factor alpha (TNF) bind to members of the TNF receptor superfamily. Stimulation by Fas ligand results in apoptosis, whereas TNF induces multiple effects including proliferation, differentiation, and apoptosis. Activation of the c-Jun N-terminal kinase (JNK) and p38 kinase pathways is common to Fas and TNF signaling; however, their role in apoptosis is controversial. Fas receptor cross-linking induces apoptosis in the absence of actinomycin D and activates JNK in a caspase-dependent manner. In contrast, TNF requires actinomycin D for apoptosis and activates JNK and p38 kinase with biphasic kinetics. The first phase is transient, precedes apoptosis, and is caspase-independent, whereas the second phase is coincident with apoptosis and is caspase-dependent. Inhibition of early TNF-induced JNK and p38 kinases using MKK4/MKK6 mutants or the p38 inhibitor SB203580 increases TNF-induced apoptosis, whereas expression of wild type MKK4/MKK6 enhances survival. In contrast, the Mek inhibitor PD098059 has no effect on survival. These results demonstrate that early activation of p38 kinase (but not Mek) are necessary to protect cells from TNF-mediated cytotoxicity. Thus, early stress kinase activation initiated by TNF plays a key role in regulating apoptosis.  相似文献   

2.
3.
We have shown that the binding of simian immunodeficiency virus (SIV) to Jurkat T cells expressing CD4 receptor strongly induces mitogen-activated protein (MAP) kinase kinase (MEK) and extracellular signal-regulated kinases 1 and 2 (ERK1/2) and only weakly induces p38 MAP kinase and c-Jun N-terminal kinase (JNK). Similarly, T-tropic NL4-3 virus, which uses both CD4 and CXCR4 receptors for entry, stimulated in these cells the MEK/ERK MAP kinase (MAPK) pathway in a CD4 receptor-dependent manner (Popik and Pitha, 1998). In contrast, both macrophage-tropic SIVmac316 and T cell-tropic SIVmac239, which in addition to CD4 require CCR5 coreceptor for entry, significantly enhanced early MEK/ERK, p38 MAPK, and JNK signaling in Jurkat cells expressing constitutively or transiently the CCR5 receptor. Together, this study provides the evidence that viruses using CXCR4 or CCR5 receptors for entry may differentially use signaling properties of their specific coreceptors to stimulate MAP kinase cascades. In addition, although SIVmac239 and SIVmac316 use different structural domains of the CCR5 receptor for entry, both viruses stimulate early phosphorylation of MEK, ERK, p38, and JNK independently of their tropism and replication.  相似文献   

4.
The inflammatory cytokine interleukin-1beta (IL-1beta) induces cyclooxygenase-2 (Cox-2) expression with a concomitant release of prostaglandins from glomerular mesangial cells. We reported previously that IL-1beta rapidly activates the c-Jun NH2-terminal/stress-activated protein kinases (JNK/SAPK) and p38 mitogen-activated protein kinase (MAPK) and also induces Cox-2 expression and prostaglandin E2 (PGE2) production. The current study demonstrates that overexpression of the dominant negative form of JNK1 or p54 JNK2/SAPKbeta reduces Cox-2 expression and PGE2 production stimulated by IL-1beta. Similarly, overexpression of the kinase-dead form of p38 MAPK also inhibits IL-1beta-induced Cox-2 expression and PGE2 production. These results suggest that activation of both JNK/SAPK and p38 MAPK is required for Cox-2 expression after IL-1beta activation. Furthermore, our experiments confirm that IL-1beta activates MAP kinase kinase-4 (MKK4)/SEK1, MKK3, and MKK6 in renal mesangial cells. Overexpression of the dominant negative form of MKK4/SEK1 decreases IL-1beta- induced Cox-2 expression with inhibition of both JNK/SAPK and p38 MAPK phosphorylation. Overexpression of the kinase-dead form of MKK3 or MKK6 demonstrated that either of these two mutant kinases inhibited IL-1beta-induced p38 MAPK phosphorylation and Cox-2 expression but not JNK/SAPK phosphorylation and activation. This study suggests that the activation of both JNK/SAPK and p38 MAPK signaling cascades is required for IL-1beta-induced Cox-2 expression and PGE2 synthesis.  相似文献   

5.
6.
Antigen stimulation of IgE-sensitized rat basophilic leukemia RBL-2H3 cells induced activation of c-Jun N-terminal kinase (JNK) within a few minutes with maximum activity attained 40 min later. The increase in JNK activity was accompanied with an increase in phosphorylation of c-Jun in the cells. The Ag-induced JNK activation was inhibited by the phosphatidylinositol 3-kinase inhibitors wortmannin (10-100 nM) and LY 294002 (100 microM) but not by the protein kinase C inhibitors calphostin C (1 and 3 microM) and Ro 31-8425 (1 and 3 microM). Pretreatment with dexamethasone (10 and 100 nM) for 18 h inhibited the Ag-induced increase in JNK activity in a concentration-dependent manner. At least 6 h of preincubation with dexamethasone was necessary to inhibit the Ag-induced JNK activation. The phosphorylation of c-Jun induced by the Ag stimulation was reduced by pretreatment with dexamethasone without reduction of the content of c-Jun protein. The Ag-induced activation of the JNK kinase kinase mitogen-activated protein kinase-extracellular signal-regulated kinase kinase-1 was also inhibited by pretreatment with dexamethasone at 10 and 100 nM. These findings indicate that dexamethasone reduces JNK protein level and inhibits the Ag-induced activation of JNK resulting in the inhibition of c-Jun phosphorylation.  相似文献   

7.
Cells respond to environmental stress and proinflammatory cytokines by stimulating the Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and the p38 mitogen-activated protein kinase cascades. Infection of eukaryotic cells with herpes simplex virus type 1 (HSV-1) resulted in stimulation of both JNK/SAPK and p38 mitogen-activated protein kinase after 3 h of infection, and activation reached a maximum of 4-fold by 9 h post-infection. By using a series of mutant viruses, we showed that the virion transactivator protein VP16 stimulates p38/JNK, whereas no immediate-early, early, or late viral expressed gene is involved. We identified the stress-activated protein kinase kinase 1 as an upstream activator of p38/JNK, and we demonstrated that activation of AP-1 binding proceeded p38/JNK stimulation. During infection, the activated AP-1 consisted mainly of JunB and JunD with a simultaneous decrease in the cellular levels of Jun protein. We suggest that activation of the stress pathways by HSV-1 infection either represents a cascade triggered by the virus to facilitate the lytic cycle or a defense mechanism of the host cell against virus invasion.  相似文献   

8.
The tumor promoter palytoxin has been found to activate the stress-activated protein kinase/c-Jun NH2-terminal kinase 1 (SAPK/JNK1), and it also potentiates, as demonstrated here, the p38/HOG1 mitogen-activated protein kinase and the upstream activator of SAPK/JNK1, SEK1/MKK4. In search of possible mechanisms for both the cytotoxicity and the activation of stress kinases by palytoxin, we found that palytoxin is a potent inhibitor of cellular protein synthesis. The inhibition of translation by palytoxin does not result from its direct binding to the translational apparatus. We have previously demonstrated that ribotoxic stressors (Iordanov, M. S., Pribnow, D., Magun, J. L., Dinh, T.-H., Pearson, J. A., Chen, S. L.-Y., and Magun, B. E. (1997) Mol. Cell. Biol. 17, 3373-3381) signal the activation of SAPK/JNK1 by binding to or covalently modifying 28 S rRNA in ribosomes that are active at the time of exposure to the stressor. Palytoxin acted as a ribotoxic stressor, inasmuch as it required actively translating ribosomes at the time of exposure to activate SAPK/JNK1. Palytoxin has been shown to augment ion fluxes by binding to the Na+/K+-ATPase in the plasma membrane of cells. To determine whether altered fluxes of either Na+ or K+ could be responsible for the effects of palytoxin on translation and on activation of SAPK/JNK1, cells were exposed to palytoxin in modified culture medium in which a major portion of the Na+ was replaced by either K+ or by choline+. The substitution of Na+ by K+ strongly inhibited the ability of palytoxin both to inhibit protein translation and to activate SAPK/JNK1, whereas the substitution of Na+ by choline+ did not. These results suggest that palytoxin-induced efflux of cellular K+ mimics ribotoxic stress by provoking both translational inhibition and activation of protein kinases associated with cellular defense against stress.  相似文献   

9.
We examined the possibility that c-Jun N-terminal kinase (JNK) and nuclear factor kappaB (NF-kappaB) might be involved in intracellular signaling cascades that mediate NMDA-initiated neuronal events. Exposure of cortical neurons to 100 microM NMDA induced activation of JNK within 1 min. Activity of JNK was further increased over the next 5 min and then declined by 30 min. Similarly, ionomycin, a selective Ca2+ ionophore, induced activation of JNK. The NMDA-induced activation of JNK was abrogated in the absence of extracellular Ca2+, suggesting that Ca2+ entry is necessary and sufficient for the JNK activation. Immunohistochemistry with anti-NF-kappaB antibody demonstrated nuclear translocation of NF-kappaB within 5 min following NMDA treatment. NMDA treatment also enhanced the DNA binding activity of nuclear NF-kappaB in a Ca2+-dependent manner. Treatment with 3 mM aspirin blocked the NMDA-induced activation of JNK and NF-kappaB. Neuronal death following a brief exposure to 100 microM NMDA was Ca2+ dependent and attenuated by addition of aspirin or sodium salicylate. The present study suggests that Ca2+ influx is required for NMDA-induced activation of JNK and NF-kappaB as well as NMDA neurotoxicity. This study also implies that aspirin may exert its neuroprotective action against NMDA through blocking the NMDA-induced activation of NF-kappaB and JNK.  相似文献   

10.
Hematopoietic progenitor kinase 1 (HPK1), a mammalian Ste20-related protein kinase, is an upstream activator of c-Jun N-terminal kinase (JNK). In order to further characterize the HPK1-mediated JNK signaling cascade, we searched for HPK1-interacting proteins that could regulate HPK1. We found that HPK1 interacted with Crk and CrkL adaptor proteins in vitro and in vivo and that the proline-rich motifs within HPK1 were involved in the differential interaction of HPK1 with the Crk proteins and Grb2. Crk and CrkL not only activated HPK1 but also synergized with HPK1 in the activation of JNK. The HPK1 mutant (HPK1-PR), which encodes the proline-rich region alone, blocked JNK activation by Crk and CrkL. Dominant-negative mutants of HPK1 downstream effectors, including MEKK1, TAK1, and SEK1, also inhibited Crk-induced JNK activation. These results suggest that the Crk proteins serve as upstream regulators of HPK1. We further observed that the HPK1 mutant HPK1-KD(M46), which encodes the kinase domain with a point mutation at lysine-46, and HPK1-PR blocked interleukin-2 (IL-2) induction in Jurkat T cells, suggesting that HPK1 signaling plays a critical role in IL-2 induction. Interestingly, HPK1 phosphorylated Crk and CrkL, mainly on serine and threonine residues in vitro. Taken together, our findings demonstrate the functional interaction of HPK1 with Crk and CrkL, reveal the downstream pathways of Crk- and CrkL-induced JNK activation, and highlight a potential role of HPK1 in T-cell activation.  相似文献   

11.
Interleukin-2 (IL-2) is a potent T cell mitogen. However, the signaling pathways by which IL-2 mediates its mitogenic effect are not fully understood. One of the members of the mitogen-activated protein kinase (MAPK) family, p42/44MAPK (ERK2/1), is known to be activated by IL-2. We have now investigated the response to IL-2 of two other members of the MAP kinase family, p54MAP kinase (stress-activated protein kinase (SAPK)/Jun-N-terminal kinase (JNK)) and p38MAP kinase (p38/Mpk2/CSBP/RK), which respond primarily to stressful and inflammatory stimuli (e.g. tumor necrosis factor-alpha, IL-1, and lipopolysaccharide). Here we show that IL-2, and another T cell growth factor, IL-7, activate both SAPK/JNK and p38MAP kinase. Furthermore, inhibition of p38MAP kinase activity with a specific pyrinidyl imidazole inhibitor SB203580 that prevents activation of its downstream effector, MAPK-activating protein kinase-2, correlated with suppression of IL-2- and IL-7-driven T cell proliferation. These data indicate that in T cells p38MAP kinase has a role in transducing the mitogenic signal.  相似文献   

12.
We have shown previously that interleukin-4 (IL-4) protects TS1alphabeta cells from apoptosis, but very little is known about the mechanism by which IL-4 exerts this effect. We found that Akt activity, which is dependent on phosphatidylinositol 3 kinase, is reduced in IL-4-deprived TS1alphabeta cells. Overexpression of wild-type Akt or a constitutively active Akt mutant protects cells from IL-4 deprivation-induced apoptosis. Readdition of IL-4 before the commitment point is able to restore Akt activity. We also show expression and c-Jun N-terminal kinase 2 activation after IL-4 deprivation. Overexpression of the constitutively activated Akt mutant in IL-4-deprived cells correlates with inhibition of c-Jun N-terminal kinase 2 activity. Finally, TS1alphabeta survival is independent of Bcl-2, Bcl-x, or Bax.  相似文献   

13.
14.
We have reported that treatment with CdCl2 at 40-100 microM induces the heat shock proteins (HSPs) in 9L rat brain tumor cells, during which the activation of heat shock factor (HSF) is essentially involved. By exploiting protein kinase inhibitors, we further analyzed the possible participation of specific protein kinases in the above processes. It was found that induction of HSP70 in cells treated with a high concentration of cadmium (i.e. 100 microM) is preceded by the phosphorylation and activation of p38 mitogen-activated protein kinase (p38(MAPK)), while that in cells treated with a low concentration (60 microM) is accompanied by the phosphorylation and activation of extracellular-regulated protein kinases 1 and 2 (ERK1/2). In 100 microM cadmium-treated cells, both HSP70 induction and HSF1 activation are eliminated in the presence of SB203580, a specific inhibitor of p38(MAPK). By contrast, in 60 microM cadmium-treated cells, the processes are not affected by SB203580 but are significantly suppressed by PD98059, which indirectly inhibits ERK1/2 by acting on MAPK-ERK kinase. Taken together, we demonstrate that p38(MAPK) and ERK1/2 can be simultaneously or independently activated under different concentrations of cadmium and that the signaling pathways participate in the induction of HSP70 by acting on the inducible phosphorylation of HSF1. We thus provide the first evidence that both p38(MAPK) and ERK signaling pathways can differentially participate in the activation of HSF1, which leads to the induction of HSP70 by cadmium.  相似文献   

15.
We have generated a mouse model for hepatic ischemia in which surgical subcutaneous transposition of the spleen allows hepatic ischemia to be applied without affecting other tissues. Using this mouse model we investigated the relationship between the length of ischemic periods in the liver and subsequent liver function; furthermore, we assayed the activation of c-Jun N-terminal kinase (JNK) during ischemia and reperfusion. Although prior to this study only the activated form of JNK was known to be translocated to the nucleus, we found that JNK translocates to the nucleus during ischemia without activation and is then activated during reperfusion. These results suggest a novel mechanism of JNK activation.  相似文献   

16.
The induction of T cell proliferation requires signals from the TCR and a co-receptor molecule, such as CD28, that activate parallel and partially cross-reactive signaling pathways. These pathways are disrupted by agonists that utilize adenylate cyclase and cAMP-dependent protein kinase A (PKA). We found that the adenylate cyclase activator, forskolin, inhibits anti-CD3-induced shift in Lck electrophoretic mobility, suggesting an intervention at the TCR-coupled phosphoinositide turnover that precedes the activation of PKC. The shift of Lck following direct PKC activation by 12-O-tetradecanoyl phorbol 13-acetate, which bypasses early receptor-triggered biochemical events, is insensitive to forskolin. Nevertheless, forskolin also inhibits PKC downstream events, such as c-jun expression, which is critical for the activation process of T cells. To further analyze potential cross points between positively and negatively regulating signaling pathways in T cells, we tested the effects of activators of the adenylate cyclase or PKA on two parallel mitogen-activated protein kinase signaling pathways mediated by extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase. Using a PKC-specific inhibitor, GF109203X, or PKC-depleted T cells, we found that a large part of the anti-CD3-induced ERK activation is PKC dependent. Both PKC-dependent and -independent activation of ERK were sensitive to inhibition by forskolin or a cell-permeable cAMP analogue, dbcAMP. Furthermore, the effect of 12-O-tetradecanoyl phorbol 13-acetate and ionomycin, which synergized to fully activate c-Jun N-terminal kinase, was also sensitive to inhibition by forskolin. Our results suggest that PKA inhibits T cell activation by interfering with multiple events along the two signaling pathways operating downstream of the TCR and the CD28 co-receptor molecules.  相似文献   

17.
Deregulated overexpression of c-Myc (Myc) confers susceptibility to apoptosis in several cell types, but the molecular regulation of these processes has not been well established. Here we have characterized several molecular changes that may modulate Myc-dependent apoptosis. Ectopic overexpression of Myc in both Rat1 fibroblasts and human osteosarcoma cells causes a dramatic increase of cellular p53 mRNA and protein, and this induction of p53 correlates with apoptosis triggered by withdrawal of serum. Stable transfection of a wild-type human p53 gene into Myc-transformed cells further potentiates apoptosis. Anticancer agents vinblastine and nocodazole also induce apoptosis in Myc-transformed Rat1 fibroblasts but are cytostatic to the same cells without Myc overexpression. We demonstrate that induction of Myc-dependent apoptosis in these cells is specifically associated with an activation of p46 c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) activity, whereas this JNK/SAPK activation is absent in stress-treated cells without Myc overexpression. Moreover, overexpression of the Mdm-2 gene in Rat1-myc cells significantly inhibits apoptosis induced by low serum but has little effect on apoptosis triggered by chemotherapeutic drugs. Interestingly, differential inhibition by Mdm-2 paralleled differential activation of p46 JNK/SAPK. Thus, our data support a functional involvement of p53 in Myc-dependent apoptosis and implicate potential regulatory roles for JNK/SAPK and Mdm-2 pathways in the regulation of apoptosis in Myc-transformed tumor cells.  相似文献   

18.
CD40 engagement induces a variety of functional outcomes following association with adaptor molecules of the TNF receptor-associated factor (TRAF) family. Whereas TRAF2, -5, and -6 initiate NF-kappaB activation, the outcomes of TRAF3-initiated signaling are less characterized. To delineate CD40-induced TRAF3-dependent events, Ramos B cells stably transfected with a dominant negative TRAF3 were stimulated with membranes expressing recombinant CD154/CD40 ligand. In the absence of TRAF3 signaling, activation of p38 and control of Ig production were abrogated, whereas Jun N-terminal kinase activation and secretion of IL-10, lymphotoxin-alpha, and TNF-alpha were partially blocked. By contrast, induction of apoptosis, activation of NF-kappaB, generation of granulocyte-macrophage CSF, and up-regulation of CD54, MHC class II, and CD95 were unaffected by the TRAF3 dominant negative. Together, these results indicate that TRAF3 initiates independent signaling pathways via p38 and JNK that are associated with specific functional outcomes.  相似文献   

19.
20.
The small GTP-binding proteins Ras, Rac, and Cdc42 link protein-tyrosine kinases with mitogen-activated protein kinase (MAPK) signaling cascades. Ras controls the activation of extracellular signal-regulated kinases (ERKs), while Rac and Cdc42 regulate the c-Jun N-terminal kinases (JNKs). In this study, we investigated whether small G protein/MAPK cascades contribute to signal transduction by transforming variants of c-Fes, a nonreceptor tyrosine kinase implicated in cytokine signaling and myeloid differentiation. First, we investigated the effects of dominant-negative small G proteins on Rat-2 fibroblast transformation by a retroviral homolog of c-Fes (v-Fps) and by c-Fes activated via N-terminal addition of the v-Src myristylation signal (Myr-Fes). We observed that dominant-negative Ras, Rac, and Cdc42 inhibited v-Fps- and Myr-Fes-induced growth of Rat-2 cells in soft agar, indicating that activation of these small GTP-binding proteins is required for fibroblast transformation by Fps/Fes tyrosine kinases. To determine whether MAPK pathways are activated downstream of these small G proteins, we measured ERK and JNK activity in the v-Fps- and Myr-Fes-transformed Rat-2 cells. Both ERK and JNK activities were elevated in the transformed cells, suggesting that these pathways are involved in cellular transformation. Dominant-negative mutants of Ras (but not Rac or Cdc42) specifically inhibited ERK activation by v-Fps and Myr-Fes, demonstrating that ERK activation occurs exclusively downstream of Ras. All three dominant-negative small G proteins inhibited JNK activation by v-Fps and Myr-Fes, indicating that JNK activation by these tyrosine kinases requires both Ras and Rho family GTPases. These data demonstrate that multiple small G protein/MAPK cascades are involved in downstream signal transduction by Fps/Fes tyrosine kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号