共查询到20条相似文献,搜索用时 78 毫秒
1.
《计算机应用与软件》2017,(12)
针对人脸识别难题,提出一种基于改进LBP(Local Binary Patterns)算子的单样本人脸识别算法。采用Bernser算法与LBP算子结合的BLBP算子,最后利用Chi平方统计方法计算直方图的相似度。在识别时,采用的是核实式的一对一匹配,根据训练的阈值,判断两张比对的人脸图像是否为同一个人。所提出的算法在实际人脸图像和FERRET人脸数据库下的人脸识别中,与原LBP算法相比识别率有所提高。实验结果表明,改进后的LBP算子有较好的去噪能力,在实际的人脸识别中能获得更好的识别率。 相似文献
2.
3.
一种基于改进LBP算子的人脸识别算法研究 总被引:1,自引:0,他引:1
提出了一种基于改进LBP算子的人脸识别算法。局部二元模式(LBP)是一种灰度范围内的纹理描述方式,它从一种纹理局部近邻定义中衍生出来。然而,LBP算子本身还不够完善,在人脸识别的应用中还存在许多问题亟待解决。文章在此基础上,对其特征的组合方式等方面作了一些改进,并将改进后的LBP算子用于人脸识别。通过改进前后在YALE人脸库的实验比较,该方法在识别率上取得了较好的结果。 相似文献
4.
由于全局特征与局部特征在人脸识别中的不同作用及结合的必要性,提出基于2DLDA全局特征与LBP局部特征加权融合算法,并在ORL库及光照子集、表情子集、姿态子集四个实验库上讨论融合算法对复杂光照、表情、姿态的鲁棒性.实验结果验证两种特征的互补性和融合算法的有效性. 相似文献
5.
《传感器与微系统》2019,(5)
针对传统局部二值模式(LBP)特征提取方法在光线和人脸表情变化的情况下表现不佳、单一方法提取出的特征不能多角度表现出整张人脸的特征信息的问题,提出一种基于分块LBP融合特征和支持向量机(SVM)的人脸识别方法。先将人脸图像划分为不同的块,对每一块提取LBP特征;然后将不同分块的像素均值特征与LBP特征进行融合,用融合后的特征向量来表征人脸;最后引入SVM作为分类器对上述特征进行分类。在YALE、ORL标准人脸库以及自建人脸库上进行实验验证,实验结果表明:该方法识别准确率分别能达到95. 15%,99. 75%,96. 25%,对比实验显示,该方法优于C4. 5决策树、随机森林等传统方法。 相似文献
6.
为了提取具有鉴别能力的红外人脸图像局部结构特征,提出一种基于LBP(local binary pattern)鉴别模式的红外人脸识别方法。传统的LBP均匀模式,提取自然图像中占主导地位的信息用于识别,但占主导地位的信息不一定是最适合识别的。为了提取有效的鉴别模式特征,基于监督学习的思想,在LBP模式下引入可分性标准,对不同LBP模式进行有效的模式选择,从而抽取适合识别的鉴别模式。最后,为了利用人脸的空间位置信息,结合分块和直方图技术得到最后的识别特征。实验结果表明,本文鉴别模式可以提取更适合识别的特征,识别性能优于传统的基于均匀模式的LBP方法。 相似文献
7.
提出一种融合局部二值模式(LBP)和局部非负矩阵分解(LNMF)进行人脸识别的方法,采用LBP算子提取分块人脸图像的LBP直方图序列(LBPHS),根据每块的贡献度,得到权重的直方图序列(WeightLBPHS),采用LNMF方法提取其非负子空间及其系数矩阵,根据最近邻原则进行识别。在ORL和YALE标准人脸数据库上的实验表明,该方法具有较高的识别率。 相似文献
8.
流形学习方法可以有效地发现存在于高维图像空间的低维子流形,但是流形学习是一种非监督学习方法,其鉴别能力反而不如传统的维数约简方法,且对人脸图像的光照、姿态等局部变化敏感,针对这两个问题,本文提出一种基于人脸表观流形鉴别分析的识别方法,该方法利用局部二元模式(Local binary pattern,LBP)对人脸图像进行局部特征描述,提取对局部变化不敏感的特征,然后使用有监督的核局部线性嵌入算法(Supervised kernell ocal linear embedding,SKLLE)对由局部特征构造的全局特征进行维数约简,提取低维鉴别流形特征进行人脸识别,该方法不仅对局部变化不敏感,而且将人脸表观流形和类别信息进行有效的结合,同时对新样本有较好的泛化性,实验结果表明该算法能有效的提高人脸识别的性能. 相似文献
9.
针对复杂光照条件下的人脸识别,提出了一种基于光照归一化分块完备局部二值模式(B-CLBP)特征的人脸识别算法。该方法对人脸图像进行光照归一化预处理,对处理后的人脸图像进行B-CLBP特征提取,融合成B-CLBP直方图,根据最近邻准则进行分类识别。在Extended Yale B人脸库上的实验结果表明,所提算法可以有效提高复杂光照条件下的人脸识别率。 相似文献
10.
提出了一种新的使用汉明距离约束的LBP(局部二值化模式)人脸识别算法。传统的LBP算子使用一致性模式(Uniform Pattern)来描述图像的局部特征,并且把其他非一致性模式都归并到另外的一个类中去,对于受光照和表情变化影响的图像,这种方法的准确性会降低。假定光照、姿态、表情的影响都可以看作是某种“噪声”,把信道编码中广泛应用的汉明距离引入到LBP算法中,减少由于这些噪声干扰产生的错误率。在FRGC上的实验结果显示:对于无约束环境下的人脸图片来说,该方法要优于传统的基于LBP的人脸识别方法。 相似文献
11.
基于改进的Fisher准则的多示例学习视频人脸识别算法 总被引:1,自引:0,他引:1
视频环境下目标的姿态变化使得人脸关键帧难以准确定位,导致基于关键帧标识的视频人脸识别方法的识别率偏低.为解决上述问题,本文提出一种基于Fisher加权准则的多示例学习视频人脸识别算法.该算法将视频人脸识别视为一个多示例问题,将视频中归一化后的人脸帧图像作为视频包中的示例,采用分块TPLBP级联直方图作为示例纹理特征,示例特征的权值通过改进的Fisher准则获得.在训练集合的示例特征空间中,采用多示例学习算法生成分类器,进而实现对测试视频的分类及预测.通过在Honda/UCSD视频库和Youtube Face数据库中的相关实验,该算法达到了较高的识别精度,从而验证了算法的有效性.同时,该方法对均匀光照变化、姿态变化等具有良好的鲁棒性. 相似文献
12.
视频场景复杂多变, 视频采集设备不一致等原因, 导致无约束视频中充斥着大量的遮挡和人脸旋转, 视频人脸识别方法的准确率不高且性能不稳定.为解决上述问题, 本文提出了一种基于QPSO优化的流形学习的视频人脸识别算法.该算法将视频人脸识别视为图像集相似度度量问题, 首先帧图像对齐后提取纹理特征并进行融合, 再利用带有QPSO优化的黎曼流形大幅度简约维度以获得视频人脸的内在表示, 相似度则由凸包距离表示, 最后利用SVM分类器获得分类结果.通过在Youtube Face数据库和Honda/UCSD数据库上与当前主流算法进行的对比实验, 验证了本文算法的有效性, 所提算法识别精度较高, 误差较低, 并且对光照和表情变化具有较强的鲁棒性. 相似文献
13.
为解决听力障碍者与无障碍者的信息交流问题,对哑语手势自动识别技术进行研究;提出了一种改进的手势识别算法;首先通过YUV肤色分割、图像差分、连通域检测等算法进行预处理,获取完整的手型区域图像;然后对手型的二值图像进行轮廓检测,采用LBP变换与主成分分析进行特征提取与压缩;最后运用支持向量机的机器学习算法构建分类器,对哑语手势进行分类识别;通过对630张手势图像进行实验,结果表明,提出的算法有效提高了识别率与速度,识别率达到94.22%,速度达到0.29s/幅,可以满足哑语交流的实时性要求. 相似文献
14.
本文研究基于Gabor小波变换和流形学习的人脸识别方法,首先引入Gabor小波对人脸图像提取不同方向、不同尺度的多个Gabor幅值特征(Gabor magnitude feature),然后使用能够提取子流形的NPE算法对GMF特征进行维数约简,最后使用线性判别分析进一步提取鉴别性特征。此算法利用了Gabor特征对人脸图像的优异表征能力、流形方法和传统的判别方法。在标准人脸库上的实验结果表明,与其他降维方法相比,新算法能够获得较好的识别效果。 相似文献
15.
针对人脸识别中实时性的要求,采用FPGA硬件方式实现人脸的实时识别,对传统的LBP算法在硬件实现上存在的问题进行了详细分析,并提出了一种符合硬件数据流处理的LBP优化算法。利用AccelDSP综合工具对该优化算法进行硬件设计,并在Dasal公司的Anaconda卡的IPUFPGA上进行实验验证,满足了人脸识别中实时性的要求。实验结果表明优化后的LBP算法不仅人脸识别率得到了提高,而且在硬件上特征值提取速度是软件上的19倍,能够满足实时性的要求,达到每秒处理100幅人脸图像。 相似文献
16.
17.
基于LBP和数据扩充的CNN人脸识别研究 总被引:1,自引:0,他引:1
针对卷积神经网络在人脸识别存在的数据集比较少,容易发生过拟合的问题,提出对人脸进行局部二值模式处理,提升图像特征,再引入深度卷积生成对抗网络对局部二值化的人脸进行生成,有效扩充数据集,提升卷积神经网络的泛化能力。该人脸识别卷积神经网络模型包括3层卷积层,3层池化层,1个全连接层,1个Softmax分类回归层。仿真实验中,选取ORL人脸数据库中40人每人10张的人脸图像按8∶1∶1比例设置为训练集、验证集和测试集,并选取Yale人脸数据库中15人每人11张的人脸图像按9∶1∶1的比例设置训练集、验证集和测试集,通过LBP算法提取人脸纹理特征对其进行生成,分别扩充数据集至990张和2200张。结果表明,该算法的人脸识别率不仅高于未扩充数据PCA和LBP等传统人脸识别方法的识别率,而且也将卷积神经网络的识别率提升了约2%,有效提高了泛化能力。 相似文献
18.
19.
自适应加权LBP的单样本人脸识别方法 总被引:1,自引:0,他引:1
在面对单训练样本的人脸识别问题时,传统人脸识别方法识别率会下降很多,有的方法甚至不能使用。针对单样本人脸识别问题,提出了一种自适应加权LBP方法。方法既提取了纹理信息又包含了分块拓扑信息,更重要的是可以把这些特征用合适的权重融合起来。划分图像并用LBP提取纹理信息;利用方差来完成对特征的自适应加权融合;用最近邻分类器识别结果。在ORL人脸数据库上的实验结果表明,该方法可以有效地提高识别率。 相似文献
20.
采用LBP金字塔的人脸描述与识别 总被引:9,自引:1,他引:9
为了有效地提取人脸图像的全局和局部特征以提高人脸识别的性能,提出一种基于LBP金字塔特征的人脸描述与识别算法.首先通过多尺度分析构建人脸图像金字塔;然后采用LBP算子提取各层图像的LBP特征谱,建立图像的LBP金字塔;最后对LBP金字塔各层特征谱进行分块统计,并将各层的统计直方图序列连接起来作为人脸的鉴别特征用于分类识别.该算法在ORL和FERET人脸数据库上取得了较高的人脸识别率.实验分析表明,LBP金字塔特征具有较强的人脸描述能力和可鉴别性,且对光照、人脸表情及位置的变化具有较高的鲁棒性. 相似文献