首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arches: a Framework for Modeling Complex Terrains   总被引:2,自引:0,他引:2  
In this paper, we present a framework for representing complex terrains with such features as overhangs, arches and caves and including different materials such as sand and rocks. Our hybrid model combines a volumetric discrete data structure that stores the different materials and an implicit representation for sculpting and reconstructing the surface of the terrain. Complex scenes can be edited and sculpted interactively with high level tools. We also propose an original rock generation technique that enables us to automatically generate complex rocky sceneries with piles of rocks without any computationally demanding physically-based simulation.  相似文献   

2.
An increasing number of projects have examined the perceptual magnitude of visible artifacts in animated motion. These studies have been performed using a mix of character types, from detailed human models to abstract geometric objects such as spheres. We explore the extent to which character morphology influences user sensitivity to errors in a fixed set of ballistic motions replicated on three different character types. We find user sensitivity responds to changes in error type or magnitude in a similar manner regardless of character type, but that users display a higher sensitivity to some types of errors when these errors are displayed on more human‐like characters. Further investigation of those error types suggests that being able to observe a period of preparatory motion before the onset of ballistic motion may be important. However, we found no evidence to suggest that a mismatch between the preparatory phase and the resulting ballistic motion was responsible for the higher sensitivity to errors that was observed for the most humanlike character.  相似文献   

3.
Fluid animations in computer graphics show interactions with various kinds of objects. However, fluid flowing through a granular material such as sand is still not possible within current frameworks. In this paper, we present the simulation of fine granular materials interacting with fluids. We propose a unified Smoothed Particle Hydrodynamics framework for the simulation of both fluid and granular material. The granular volume is simulated as a continuous material sampled by particles. By incorporating previous work on porous flow in this simulation framework we are able to fully couple fluid and sand. Fluid can now percolate between sand grains and influence the physical properties of the sand volume. Our method demonstrates various new effects such as dry soil transforming into mud pools by rain or rigid sand structures being eroded by waves.  相似文献   

4.
Real-Time Rendering and Editing of Vector-based Terrains   总被引:2,自引:0,他引:2  
  相似文献   

5.
We present a new method for estimating the radiance function of complex area light sources. The method is based on Jensen's photon mapping algorithm. In order to capture high angular frequencies in the radiance function, we incorporate the angular domain into the density estimation. However, density estimation in position-direction space makes it necessary to find a tradeoff between the spatial and angular accuracy of the estimation. We identify the parameters which are important for this tradeoff and investigate the typical estimation errors. We show how the large data size, which is inherent to the underlying problem, can be handled. The method is applied to different automotive tail lights. It can be applied to a wide range of other real-world light sources.  相似文献   

6.
In coloured media, the index of refraction does not decrease monotonically with increasing wavelength, but behaves in a quite non-monotonical way. This behaviour is called anomalous dispersion and results from the fact that the absorption of a material influences its index of refraction.
So far, this interesting fact has not been widely acknowledged by the graphics community. In this paper, we demonstrate how to calculate the correct refractive index for a material based on its absorption spectrum with the Kramers-Kronig relation, and we discuss for which types of objects this effect is relevant in practice.  相似文献   

7.
This paper presents a novel method for estimating specular roughness and tangent vectors, per surface point, from polarized second order spherical gradient illumination patterns. We demonstrate that for isotropic BRDFs, only three second order spherical gradients are sufficient to robustly estimate spatially varying specular roughness. For anisotropic BRDFs, an additional two measurements yield specular roughness and tangent vectors per surface point. We verify our approach with different illumination configurations which project both discrete and continuous fields of gradient illumination. Our technique provides a direct estimate of the per-pixel specular roughness and thus does not require off-line numerical optimization that is typical for the measure-and-fit approach to classical BRDF modeling.  相似文献   

8.
Visualizing Underwater Ocean Optics   总被引:1,自引:0,他引:1  
Simulating the in‐water ocean light field is a daunting task. Ocean waters are one of the richest participating media, where light interacts not only with water molecules, but with suspended particles and organic matter as well. The concentration of each constituent greatly affects these interactions, resulting in very different hues. Inelastic scattering events such as fluorescence or Raman scattering imply energy transfers that are usually neglected in the simulations. Our contributions in this paper are a bio‐optical model of ocean waters suitable for computer graphics simulations, along with an improved method to obtain an accurate solution of the in‐water light field based on radiative transfer theory. The method provides a link between the inherent optical properties that define the medium and its apparent optical properties, which describe how it looks. The bio‐optical model of the ocean uses published data from oceanography studies. For inelastic scattering we compute all frequency changes at higher and lower energy values, based on the spectral quantum efficiency function of the medium. The results shown prove the usability of the system as a predictive rendering algorithm. Areas of application for this research span from underwater imagery to remote sensing; the resolution method is general enough to be usable in any type of participating medium simulation.  相似文献   

9.
Computing global illumination in complex scenes is even with todays computational power a demanding task. In this work we propose a novel irradiance caching scheme that combines the advantages of two state-of-the-art algorithms for high-quality global illumination rendering: lightcuts , an adaptive and hierarchical instant-radiosity based algorithm and the widely used (ir)radiance caching algorithm for sparse sampling and interpolation of (ir)radiance in object space. Our adaptive radiance caching algorithm is based on anisotropic cache splatting, which adapts the cache footprints not only to the magnitude of the illumination gradient computed with light-cuts but also to its orientation allowing larger interpolation errors along the direction of coherent illumination while reducing the error along the illumination gradient. Since lightcuts computes the direct and indirect lighting seamlessly, we use a two-layer radiance cache, to store and control the interpolation of direct and indirect lighting individually with different error criteria. In multiple iterations our method detects cache interpolation errors above the visibility threshold of a pixel and reduces the anisotropic cache footprints accordingly. We achieve significantly better image quality while also speeding up the computation costs by one to two orders of magnitude with respect to the well-known photon mapping with (ir)radiance caching procedure.  相似文献   

10.
We introduce image-space radiosity and a hierarchical variant as a method for interactively approximating diffuse indirect illumination in fully dynamic scenes. As oft observed, diffuse indirect illumination contains mainly low-frequency details that do not require independent computations at every pixel. Prior work leverages this to reduce computation costs by clustering and caching samples in world or object space. This often involves scene preprocessing, complex data structures for caching, or wasted computations outside the view frustum. We instead propose clustering computations in image space, allowing the use of cheap hardware mipmapping and implicit quadtrees to allow coarser illumination computations. We build on a recently introduced multiresolution splatting technique combined with an image-space lightcut algorithm to intelligently choose virtual point lights for an interactive, one-bounce instant radiosity solution. Intelligently selecting point lights from our reflective shadow map enables temporally coherent illumination similar to results using more than 4096 regularly-sampled VPLs.  相似文献   

11.
This paper presents a new, scalable, single pass algorithm for computing subsurface scattering using the diffusion approximation. Instead of pre‐computing a globally conservative estimate of the surface irradiance like previous two pass methods, the algorithm simultaneously refines hierarchical and adaptive estimates of both the surface irradiance and the subsurface transport. By using an adaptive, top‐down refinement method, the algorithm directs computational effort only to simulating those eye‐surface‐light paths that make significant contributions to the final image. Because the algorithm is driven by image importance, it scales more efficiently than previous methods that have a linear dependence on translucent surface area. We demonstrate that in scenes with many translucent objects and in complex lighting environments, our new algorithm has a significant performance advantage.  相似文献   

12.
Point clusters occur in both spatial and non-spatial data. In the former context they may represent segmented particle data, in the latter context they may represent clusters in scatterplots. In order to visualize such point clusters, enclosing surfaces lead to much better comprehension than pure point renderings.
We propose a flexible system for the generation of enclosing surfaces for 3D point clusters. We developed a GPU-based 3D discrete Voronoi diagram computation that supports all surface extractions. Our system provides three different types of enclosing surfaces. By generating a discrete distance field to the point cluster and extracting an isosurface from the field, an enclosing surface with any distance to the point cluster can be generated. As a second type of enclosing surfaces, a hull of the point cluster is extracted. The generation of the hull uses a projection of the discrete Voronoi diagram of the point cluster to an isosurface to generate a polygonal surface. Generated hulls of non-convex clusters are also non-convex. The third type of enclosing surfaces can be created by computing a distance field to the hull and extracting an isosurface from the distance field. This method exhibits reduced bumpiness and can extract surfaces arbitrarily close to the point cluster without losing connectedness.
We apply our methods to the visualization of multidimensional spatial and non-spatial data. Multidimensional clusters are extracted and projected into a 3D visual space, where the point clusters are visualized. The respective clusters can also be visualized in object space when dealing with multidimensional particle data.  相似文献   

13.
A Semi-Lagrangian CIP Fluid Solver without Dimensional Splitting   总被引:1,自引:0,他引:1  
In this paper, we propose a new constrained interpolation profile (CIP) method that is stable and accurate but requires less amount of computation compared to existing CIP‐based solvers. CIP is a high‐order fluid advection solver that can reproduce rich details of fluids. It has third‐order accuracy but its computation is performed over a compact stencil. These advantageous features of CIP are, however, diluted by the following two shortcomings: (1) CIP contains a defect in the utilization of the grid data, which makes the method suitable only for simulations with a tight CFL restriction; and (2) CIP does not guarantee unconditional stability. There have been several attempts to fix these problems in CIP, but they have been only partially successful. The solutions that fixed both problems ended up introducing other undesirable features, namely increased computation time and/or reduced accuracy. This paper proposes a novel modification of the original CIP method that fixes all of the above problems without increasing the computational load or reducing the accuracy. Both quantitative and visual experiments were performed to test the performance of the new CIP in comparison to existing fluid solvers. The results show that the proposed method brings significant improvements in both accuracy and speed.  相似文献   

14.
Significant progress has been made in high-quality hair rendering, but it remains difficult to choose parameter values that reproduce a given real hair appearance. In particular, for applications such as games where naive users want to create their own avatars, tuning complex parameters is not practical. Our approach analyses a single flash photograph and estimates model parameters that reproduce the visual likeness of the observed hair. The estimated parameters include color absorptions, three reflectance lobe parameters of a multiple-scattering rendering model, and a geometric noise parameter. We use a novel melanin-based model to capture the natural subspace of hair absorption parameters. At its core, the method assumes that images of hair with similar color distributions are also similar in appearance. This allows us to recast the issue as an image retrieval problem where the photo is matched with a dataset of rendered images; we thus also match the model parameters used to generate these images. An earth-mover's distance is used between luminance-weighted color distributions to gauge similarity. We conduct a perceptual experiment to evaluate this metric in the context of hair appearance and demonstrate the method on 64 photographs, showing that it can achieve a visual likeness for a large variety of input photos.  相似文献   

15.
Adaptive Caustic Maps Using Deferred Shading   总被引:1,自引:0,他引:1  
Caustic maps provide an interactive image-space method to render caustics, the focusing of light via reflection and refraction. Unfortunately, caustic mapping suffers problems similar to shadow mapping: aliasing from poor sampling and map projection as well as temporal incoherency from frame-to-frame sampling variations. To reduce these problems, researchers have suggested methods ranging from caustic blurring to building a multiresolution caustic map. Yet these all require a fixed photon sampling, precluding the use of importance-based photon densities. This paper introduces adaptive caustic maps. Instead of densely sampling photons via a rasterization pass, we adaptively emit photons using a deferred shading pass. We describe deferred rendering for refractive surfaces, which speeds rendering of refractive geometry up to 25% and with adaptive sampling speeds caustic rendering up to 200%. These benefits are particularly noticable for complex geometry or using millions of photons. While developed for a GPU rasterizer, adaptive caustic map creation can be performed by any renderer that individually traces photons, e.g., a GPU ray tracer.  相似文献   

16.
Currently 3D animation rendering and video compression are completely independent processes even if rendered frames are streamed on‐the‐fly within a client‐server platform. In such scenario, which may involve time‐varying transmission bandwidths and different display characteristics at the client side, dynamic adjustment of the rendering quality to such requirements can lead to a better use of server resources. In this work, we present a framework where the renderer and MPEG codec are coupled through a straightforward interface that provides precise motion vectors from the rendering side to the codec and perceptual error thresholds for each pixel in the opposite direction. The perceptual error thresholds take into account bandwidth‐dependent quantization errors resulting from the lossy com‐pression as well as image content‐dependent luminance and spatial contrast masking. The availability of the discrete cosine transform (DCT) coefficients at the codec side enables to use advanced models of the human visual system (HVS) in the perceptual error threshold derivation without incurring any significant cost. Those error thresholds are then used to control the rendering quality and make it well aligned with the compressed stream quality. In our prototype system we use the lightcuts technique developed by Walter et al., which we enhance to handle dynamic image sequences, and an MPEG‐2 implementation. Our results clearly demonstrate many advantages of coupling the rendering with video compression in terms of faster rendering. Furthermore, temporally coherent rendering leads to a reduction of temporal artifacts.  相似文献   

17.
We present a new Precomputed Radiance Transfer (PRT) algorithm based on a two dimensional representation of isotropic BRDFs. Our approach involves precomputing matrices that allow quickly mapping environment lighting, which is represented in the global coordinate system, and the surface BRDFs, which are represented in a bivariate domain, to the local hemisphere at a surface location where the reflection integral is evaluated. When the lighting and BRDFs are represented in a wavelet basis, these rotation matrices are sparse and can be efficiently stored and combined with pre‐computed visibility at run‐time. Compared to prior techniques that also precompute wavelet rotation matrices, our method allows full control over the lighting and materials due to the way the BRDF is represented. Furthermore, this bivariate parameterization preserves sharp specular peaks and grazing effects that are attenuated in conventional parameterizations. We demonstrate a prototype rendering system that achieves real‐time framerates while lighting and materials are edited.  相似文献   

18.
Textured Liquids based on the Marker Level Set   总被引:1,自引:0,他引:1  
In this work we propose a new Eulerian method for handling the dynamics of a liquid and its surface attributes (for example its color). Our approach is based on a new method for interface advection that we term the Marker Level Set (MLS). The MLS method uses surface markers and a level set for tracking the surface of the liquid, yielding more efficient and accurate results than popular methods like the Particle Level Set method (PLS). Another novelty is that the surface markers allow the MLS to handle non-diffusively surface texture advection, a rare capability in the realm of Eulerian simulation of liquids. We present several simulations of the dynamical evolution of liquids and their surface textures.  相似文献   

19.
Stereo Light Probe   总被引:1,自引:0,他引:1  
In this paper we present a practical, simple and robust method to acquire the spatially‐varying illumination of a real‐world scene. The basic idea of the proposed method is to acquire the radiance distribution of the scene using high‐dynamic range images of two reflective balls. The use of two light probes instead of a single one allows to estimate, not only the direction and intensity of the light sources, but also the actual position in space of the light sources. To robustly achieve this goal we first rectify the two input spherical images, then, using a region‐based stereo matching algorithm, we establish correspondences and compute the position of each light. The radiance distribution so obtained can be used for augmented reality applications, photo‐realistic rendering and accurate reflectance properties estimation. The accuracy and the effectiveness of the method have been tested by measuring the computed light position and rendering synthetic version of a real object in the same scene. The comparison with standard method that uses a simple spherical lighting environment is also shown.  相似文献   

20.
An Adaptive Contact Model for the Robust Simulation of Knots   总被引:2,自引:0,他引:2  
In this paper, we present an adaptive model for dynamically deforming hyper‐elastic rods. In contrast to existing approaches, adaptively introduced control points are not governed by geometric subdivision rules. Instead, their states are determined by employing a non‐linear energy‐minimization approach. Since valid control points are computed instantaneously, post‐stabilization schemes are avoided and the stability of the dynamic simulation is improved. Due to inherently complex contact configurations, the simulation of knot tying using rods is a challenging task. In order to address this problem, we combine our adaptive model with a robust and accurate collision handling method for elastic rods. By employing our scheme, complex knot configurations can be simulated in a physically plausible way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号