首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1 INTRODUCTIONMagnesium and magnesium based alloys arepromising hydrogen storage materials because oftheir absorbability of hydrogen in large quantities,low specific gravity, rich mineral resources, lowmaterial cost and so on. Nevertheless, their hy drides are too stable to be used at room tempera ture[1]. It seems impossible for application of crys talline Mg based alloys in nickel hydrogen batter ies.It is well known that amorphous alloys havemany advanta…  相似文献   

2.
The effects of mechanical grinding with or without nickel powder on microstructure and electrochemical properties of Ce2Mg17 hydrogen storage alloy in 6 M KOH solution were investigated. The microstructure and electrochemical properties depend greatly on the amount of nickel powder introduced during mechanical grinding. For the alloy ball-milled with nickel powder, the more nickel powder added, the more advantageous it is for the formation of a homogeneous amorphous structure, and the larger discharge capacity obtained. After 90 h ball-milling, the Ce2Mg17 + 200 wt.% Ni composite exhibited a large discharge capacity of 1014 mAh g(Ce2Mg17)−1[338 mAh g(Ce2Mg17 + 200 wt.% Ni)−1] at 303 K. The improvement of electrochemical capacity can be attributed to the formation of a homogeneous amorphous structure as well as the modification of the surface state by Ni addition.  相似文献   

3.
This study concerns the influence of iron for cobalt substitution on the structural, thermodynamic and electrochemical properties of the hydrides of poly-substituted LaNi3.55Mn0.4Al0.3(Co1−xFex)0.75 (0 ≤ x ≤ 1) alloys used as material for negative electrode in Ni-MH batteries. The Fe substitution leads to an increase of the cell parameter, this increase is linear according to the rate of substitution, and a decrease of the equilibrium pressure in agreement with the geometric law. Nevertheless, it is observed that the Fe substitution leads to a deviation from the linear variation between the logarithm of the pressure and the cell volume observed for Co, Mn and Al for Ni substitution. The Fe for Co substitution leads also to a decrease of the solid–gas and electrochemical capacity.  相似文献   

4.
提出并制备了一种优化结构的硅/石墨/无定形碳复合材料,材料主要通过对硅、石墨和蔗糖的混合物进行超细粉碎和热解制备,硅基材料的电化学性能得到有效改善。研究了硅/石墨/无定形碳材料的形貌、电化学性能、循环稳定性,并对硅含量进行了优化。结果表明,将纳米硅材料负载在石墨碳基体上,结合高温热解技术,可以有效提高阳极材料的电化学性能。以石墨为缓冲基体、具备导电网络和非晶碳涂层的硅/石墨/无定形碳材料表现出良好的电化学性能。硅/石墨/无定形碳材料的非晶碳涂层可以明显降低硅与电解液之间接触损耗的可能性,并通过释放硅体积变化产生的应力来帮助保持材料的稳定性。  相似文献   

5.
In this work, the electrochemical performance of NdMg12–Ni composite electrode in alkaline solution and the effect of the surface modification with carbon nanotubes (CNTs) and boron nitride (BN) particles on the NdMg12–Ni composite were investigated. The NdMg12 alloy was synthesized by a salt-cover-melting and a subsequent quenching process. The NdMg12–Ni–BN and NdMg12–Ni–CNTs composites were prepared by ball-milling NdMg12 alloy, Ni powders and CNTs or BN particles. It is found that CNTs or BN particles are mainly attached onto the surface of the NdMg12–Ni composite after the ball-milling process. The electrochemical experiment results indicate that the NdMg12–Ni composites modified with CNTs or BN particles have the improved electrochemical performance. In particular, the NdMg12–Ni–5 wt.% CNTs and NdMg12–Ni–3 wt.% BN composites have the higher initial discharge capacity of 416.6 mAh/g and 442.9 mAh/g, respectively, larger than the original NdMg12–Ni composite. The large amount of grain boundaries and crystalline defects, induced during the ball-milling process, can accelerate the bulk hydrogen diffusion and provide more surface active sites for the electrochemical reaction of the composites. However, the cycle stability of the composites modified by CNTs or BN particles is still not satisfactory for the practical application.  相似文献   

6.
In order to improve the cycle stability of La–Mg–Ni system (PuNi3-type) hydrogen storage alloy, Ni in the alloy was partly substituted by Fe, Mn and Al, and the electrode alloys La0.7Mg0.3Ni2.55−xCo0.45Mx (M = Fe, Mn, Al; x = 0, 0.1) were prepared by casting and rapid quenching. The effects of the substitution of Fe, Mn and Al for Ni and rapid quenching on the microstructures and electrochemical properties of the alloys were investigated in detail. The results obtained by XRD, SEM and TEM indicate that element substitution has no influence on the phase compositions of the alloys, but it changes the phase abundances of the alloys. Particularly, the substitution of Al and Mn obviously raises the amount of the LaNi2 phase. The substitution of Al and Fe leads to a significant refinement of the as-quenched alloy's grains. The substitution of Al strongly restrains the formation of an amorphous in the as-quenched alloy, but the substitution of Fe is quite helpful for the formation of an amorphous phase. The effects of the substitution of Fe, Mn and Al on the cycle stabilities of the as-cast and quenched alloys are different. The positive influence of the substitution elements on the cycle stabilities of the as-cast alloys is in proper order Al > Fe > Mn, and for as-quenched alloys, the order is Fe > Al > Mn. Rapid quenching engenders an inappreciable influence on the phase composition, but it markedly enhances the cycle stabilities of the alloys.  相似文献   

7.
采用机械球磨法将纳米SnO2和Ni粉末复合,作为锂离子电池负极材料。采用XRD、SEM、TEM和EDS分析球磨过程中材料结构和形貌的变化。对SnO2/Ni复合负极材料的首次库仑效率、循环稳定性及CV曲线等进行测试分析。结果表明:将复合粉末球磨适当时间后,SnO2和Ni可形成结合充分、颗粒尺寸细小、分布均匀的复合材料;SnO2和Ni的复合可有效提高SnO2的首次库仑效率和循环稳定性;SnO2/Ni复合负极材料的循环稳定性随球磨时间的延长而增加,但电极的首次库仑效率随球磨时间的延长呈先增加后下降的趋势;Ni的引入有效减小了SnO2在首次充放电循环过程中生成Li2O的不可逆反应程度,并在随后的循环过程中部分以Li-O化合物的形式进行可逆反应。  相似文献   

8.
为研究CBN用量对Ti3AlC2结合剂CBN复合材料的影响,使用不同质量配比的Ti3AlC2粉体和CBN粉体通过放电等离子体烧结的方式制备试样,并对比其物相组成和显微形貌。结果表明:当CBN质量分数为10%时,试样的主相为Ti3AlC2、CBN和TiC;当CBN质量分数为20%~40%时,生成了TiC、TiN、AlN、TiB2等物相。另一方面,当CBN质量分数为10%和20%时,CBN表面会形成厚约10 μm的过渡层;当CBN质量分数为30%和40%时,CBN与基体间没有过渡层。若选用粒度尺寸为10 μm的CBN(质量分数为10%)进行烧结,则复合材料中出现许多气孔,基体主相为TiC等轴晶粒且在CBN表面形成厚度1~2 μm的过渡层。CBN质量分数越大或粒度尺寸越小,其同Ti3AlC2的反应越充分、过渡层越薄。   相似文献   

9.
采用真空热压烧结方法制备Al2O3/Ti(C,N)-Ni-Ti陶瓷基复合材料,采用X射线衍射与扫描电镜分析材料的物相组成和显微结构,研究烧结工艺对材料物相组成、显微结构和力学性能的影响。结果表明:Ni和Ti的添加显著提高复合材料的强度和韧性;温度小于1 600℃时,复合材料的力学性能随热压温度的升高而升高;温度高于1 600℃时,温度升高及保温时间延长不仅会导致Al2O3晶粒的异常长大和Ti(C,N)的分解,而且会使Ni发生聚集现象,复合材料的力学性能下降;当烧结温度为1 600℃、保温时间为30 min时,制备的Al2O3/Ti(C,N)-Ni-Ti陶瓷复合材料的力学性能最佳,其相对密度达到99.4%,抗弯强度为820 MPa,断裂韧性达到9.3 MPa.m1/2。  相似文献   

10.
1 INTRODUCTIONNickelmetalhydride(Ni/MH)batterieshaveattractedmuchattentionbecausetheyhavehigherenergydensityandenvironmentaladvantagecomparedwithNi/Cdbatteries.ManymulticomponentAB5typehydrogenstoragealloyshavebeendevelopedtoimproveperformancesof…  相似文献   

11.
Quaternary alloys based on MgCaNi4 were prepared by induction-melting of elemental materials. Nickel was partially substituted with several 3d transition metals or Al. Initial electrochemical capacities up to 350 mAh/g were found. However, these capacities decreased rapidly during cycling. Partial substitution of Ca by La improved the cyclic stability. The capacities deduced from desorption isotherms were generally lower than the electrochemical capacities. The reasons for this may be irreversible electrochemical processes. In disagreement with Oesterreicher et al., the MgCaNi4 alloy prepared in this work did not exhibit a single phase C15 (MgCu2) crystal structure. Instead, it exhibited primarily the CaNi5 structure. With suitable quaternary alloying additions, single phase materials could be obtained. In particular, Zn and Cu additions tended to stabilize the CaNi5 structure, whereas Mn, Cr, Fe, Co, and Al additions tended to stabilize the MgCu2 structure.  相似文献   

12.
Alloys MgNi–MB (M = Co, Ti) were successfully synthesized by means of mechanical alloying (MA). The XRD spectroscopy suggested that the alloys were amorphous. The discharge capacity and cycle life of these alloys were tested, showing that as borides were introduced, the cycling life of the alloys became much better than MgNi alloy. For instance, 10 h composite MgNi–CoB and MgNi–TiB retained 53.2% and 54.1% of the initial capacity after 30 cycles, while the MgNi alloy kept only 23.3%. The exchange impedance spectroscopy and the potentiodynamic polarization curves proved that the electrochemical properties of the composite alloys were improved significantly. MgNi–CoB was used as an example to study the mechanism of electrochemical hydrogen storage.  相似文献   

13.
A stable silicon dioxide film was coated on the surface of natural graphite anode by sol-gel method with Si(OCH2CH3)4, and effects of modification on performance of natural graphite were investigated. The structure and properties of graphite samples were determined by X-ray diffi'actometry(XRD), scanning electron microscopy(SEM), energy-dispersive X-ray spectroscopy(EDS) and electrochemical measurements. The modified graphite shows mainly the layer structure, and silicon dioxide film is amorphous. Compared with the pure natural graphite, the modified graphite exhibits the higher specific capacity of 366 mA-h/g. After 40 charge-discharge cycles, the capacity retention ratio of the modified graphite reaches 99.55%, while that of natural graphite is only 83.04%. The results indicate that the surface modification of natural graphite by SiO2 is effective for improving the electrochemical performance of the natural graphite anode for lithium ion batteries.  相似文献   

14.
用机械球磨法合成了Mg2Ni0.95Sn0.05+x%Ni(质量分数,x=25,50,75,100,125)非晶复合物,研究了其微结构和电化学性能。微结构分析表明,不添加Ni粉的Mg2Ni0.95Sn0.05合金经100h球磨后仍然难以形成非晶结构,加入镍粉有助于非晶结构的形成。电化学研究表明,铸态最大放电容量仅为16mAh/g,球磨100h后容量改善不明显;加入Ni粉球磨后,容量大幅上升,随着Ni添加量的增加,复合物最大放电容量先增后减,在x=75时达到最大值625.6mAh/g。把x=50时的复合物,延长球磨时间t,复合物最大放电容量提高,当t=200h时达到670mAh/g。  相似文献   

15.
Amorphous Mg61Ni30Y9 powder was produced by mechanical alloying using a Retsch planetary ball mill under liquid nitrogen cooling. Additional gentle milling with graphite powder resulted in a thin graphite coating of powder particles. Further milling with a high energy SPEX mill transferred the alloy into a fully nanocrystalline state. The morphological and microstructural changes were followed by means of XRD, SEM, TEM and DSC. Hydrogen storage electrodes based on those alloy powders were fabricated and their cathodic and anodic polarization behaviour and their charge–discharge cycling behaviour in 6 M KOH solution were investigated. It was found that the alloy modification from a non-defective amorphous to a highly defective nanocrystalline state is more effective for improving the hydrogen sorption properties of the alloy than the graphite coating, but is detrimental for the alloy passivation. Accordingly, a SPEX-milled powder electrode exhibits with Cmax = 570 mAh/g a higher maximum discharge capacity than a coated Retsch-milled powder electrode with Cmax = 435 mAh/g, but degrades faster during repeated cycling. Using graphite powder supporting material for electrode preparation on a nickel foam carrier was found to be much more beneficial than nickel powder for achieving maximum discharge performance.  相似文献   

16.
Different metal/ceramic composites (Al7Si0.3Mg, Al3Ni, Al6Ni, Al9Ni) reinforced with Al2O3 or ZrO2 were prepared by vortex method. Metallographic investigations reveal that in all the composites -Al did not nucleate on the reinforcement particulates. The particulates were generally observed to be located in the last freezing regions regardless of matrix alloy, particulate type or size. The reason for that was the mismatch in the thermal diffusivity between the ceramic particulates and matrix alloys. SEM micrographs show that the presence of the particulates in the AlSi alloy tends to modify the silicon eutectic. In contrast, the addition of the particulates into AlNi alloys did not result in a significant modification of the NiAl3 phase, but it displaced the eutectic point to lower Ni content.  相似文献   

17.
Carbon nanotube(CNT)-reinforced 6061 Al alloy matrix composites were prepared by chemical vapor deposition(CVD) combined with hot extrusion technique. During the preparation process, the 6061 Al flakes obtained by ball milling of the 6061 Al spherical powders were subjected to surface modification to introduce a hydrophilic polyvinyl alcohol(PVA) membrane on their surface(6061Al@PVA) to bond strongly with nickel acetate [Ni(II)]. Then the6061Al@PVA flakes bonded with Ni(II) were calcined and reduced to Ni nanoparticles, which were then heat-treated at580 °C to remove PVA for obtaining even Ni/6061 Al catalyst. After that, the as-obtained Ni/6061 Al catalyst was employed to synthesize CNTs on the surface of the 6061 Al flakes by CVD. After hot extrusion of the CNT/6061 Al composite powders, the as-obtained CNT/6061 Al bulk composites with 2.26 wt% CNTs exhibited 135% increase in yield strength and 84.5% increase in tensile strength compared to pristine 6061 Al matrix.  相似文献   

18.
The influence of Sb addition on mechanical properties and damping capacity of Mg2Si/Mg–9Al composite materials were investigated. Due to modification of Sb, Mg2Si intermetallic compound exhibits refinement polygonal type, and the grain size of Mg matrix reduces. Such improved microstructure of the modified materials results in the large improvement in tensile properties and damping capacity.  相似文献   

19.
Since ultra-fine Ti(C, N) has large surface and high activity, preparation of high performance cermets using ultra-fine Ti(C, N) powders is very difficult at the present. In the paper, deoxidation process of ultra-fine TiC0.7N0.3 powder is carried out firstly, and the oxygen content of ultra-fine TiC0.7N0.3 powder can be decreased from more than 1 wt% to 0.06 wt%; milling technology of ultra-fine TiC0.7N0.3-based cermet is studied in the paper, the results show that the optimum milling time is 45 h and the ball to powder weight ratio is 15:1, and the dispersant helps to achieve a homogeneous distribution of the ultra-fine powder; during vacuum sintering of ultra-fine cermet, pores tend to form, hence NT6B shows relatively lower properties than NT6A. After HIP process (1350 °C, 90 min, 70 MPa), the porosity can be largely decreased. The prepared ultra-fine cermet has typical core–rim microstructure, finer grain size and enhanced properties.  相似文献   

20.
Carbon nanotubes (CNTs) have high chemical stability, unique hollow nanotube structure, and are believed to be ideal materials for fabricating composites. In this study, Ni–P and Ni–P‐CNT composite coatings were fabricated by electroless plating. Scanning electron microscopy was used to characterize the coatings. The corrosion behavior of Ni–P and Ni–P‐CNT coated samples were evaluated by polarization curves and electrochemical impedance spectroscopy in 3.5 wt% NaCl and 0.1 M H2SO4 aqueous solutions at room temperature. The results indicated that incorporation of CNTs in the coating significantly increased corrosion resistance. The role of CNTs in improvement of corrosion resistance of the coating was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号