首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
均匀电场中液滴变形特性的耗散粒子动力学模拟   总被引:3,自引:2,他引:1       下载免费PDF全文
张军  何宏舟  黄冠星 《化工学报》2014,65(10):3872-3877
基于耗散粒子动力学方法,建立了电场作用下近似的液滴粒子力学模型,对两相不相溶液体中液滴在电场作用下的变形特性进行了模拟。模拟结果与他人的实验结果比较表明,模拟结果对液滴形状随时间的演化预测基本符合实际,仅在液滴变形较大时有一定偏差。模拟结果还表明,当外加场强较小时,液滴变形度随时间呈现振荡状态,变形度不会随时间继续增大。增大外加场强,液滴变形幅度增大,振荡频率变慢。当外加场强增大到一定程度时,液滴变形度不再振荡,而是随时间急剧增大,以至液滴最终破碎。场强越大,液滴破碎所需的时间也越短。  相似文献   

2.
转盘边缘黏性薄液膜不同破碎模式临界转变特性   总被引:3,自引:1,他引:2       下载免费PDF全文
王东祥  凌祥  彭浩  崔政伟  杨新俊 《化工学报》2017,68(11):4121-4128
液膜在离心粒化器边缘的破碎模式直接决定了雾化后的液滴形态和尺寸分布,是影响物料品质的关键因素。针对转盘粒化器,提出临界转变系数表征液膜由膜状向纤维状破碎的转变条件,并拓展至其他破碎模式,建立了滴状向纤维状、完全纤维状及纤维状向膜状破碎转变的临界关系。结果表明,转盘表面润湿性对于液膜呈滴状以及滴状向纤维状模式转变影响显著,未完全润湿导致临界流量存在一定的随机性,转盘直径与临界流量间无明确规律;而完全纤维状以及膜状时,大直径转盘临界流量明显升高。转速、流量、密度及黏度的提高,破碎模式趋向于膜状;而增大表面张力,即使对于较大流量和转速,液膜也能维持纤维状或滴状模式。调整转盘直径将引起表面张力与离心力同时变化,若未打破平衡,其破碎模式不会改变。研究结果为转盘粒化器的设计与优化提供了可借鉴的理论与应用基础。  相似文献   

3.
梁坤峰  高春艳 《化学工程》2011,39(12):64-68
基于欧拉法和流体体积函数建立了描述相界面运动、变形、破碎等复杂变化的界面追踪模型(VOF-CSF),该模型采用了二相界面重构技术,并考虑了界面张力和接触角的影响,将水在非相溶油中滴流雾化形成液滴过程简化为二维轴对称数值模拟,模拟了层流环境中低喷射流率下液滴形成的全过程.模拟结果表明:在滴流雾化方式下,液滴形成过程由液滴...  相似文献   

4.
黄国峰  李伟锋  屠功毅  王辅臣 《化工学报》2014,65(10):3789-3797
采用高速摄像仪对两液柱撞击产生液膜的破裂过程进行了实验研究。分析了撞击液膜的破裂过程及表面波产生和传播过程,考察了射流直径、喷嘴间距和射流Weber数(We)对撞击液膜破裂的影响;定量分析了液膜表面波频率的变化及液膜破裂后的粒径分布情况。研究结果表明,液膜表面波传播频率随We的增大而增大,并沿液膜径向方向逐渐减小;随着射流We的增加,液膜边缘的液滴脱落频率增加;当We>1000时,液膜表面产生大量液滴团,且液滴团对液膜破裂具有促进作用;液柱撞击液膜发生破裂后90%以上的量纲1液滴粒径分布在0~1之间。  相似文献   

5.
基于气泡动力学属性的现有认识,把气泡分成大、小气泡,首次建立了完整的双气泡相-群平衡模型(TBPBM)以预测气泡尺寸.通过编写用户自定义程序实现了TBPBM模型、Luo破碎模型以及Prince 聚并模型,并耦合TBPBM与CFD双流体模型对直径440 mm鼓泡塔进行数值模拟,详细考察了网格与数值格式对TBPBM-CFD模型模拟结果的影响.结果表明,网格与数值格式对各物理变量的模拟结果影响非常大,特别是网格和体积分数方程对流项离散格式的影响最为显著.随着计算精度的提高,湍流耗散率和整体气含率分布梯度增大,气泡平均直径减少,大气泡所占气相比率降低,液相速度及气含率径向分布与实验值更趋吻合.  相似文献   

6.
水力喷射空气旋流器(WSA)是一种新型高效的气液传质反应设备。采用雷诺应力模型和VOF两相流模型较好地模拟了WSA的气相压降特性、液相回流比和射流雾化过程,并讨论分析了雾化过程的机理。模拟和实验研究表明,WSA的气相压降随着进口气速的增加先后出现低压降区、压降突跳区、压降过渡区和高压降区4个特征区域,并给出了不同压降区域之间转折点气速的计算方法。射流在这4个压降区域里,分别表现为稳态射流、变形与袋式破碎、袋式破碎与剪切雾化和剪切雾化与离心分离等流态。射流在压降过渡区与高压降区的转折点左右实现充分雾化并达到最大相间传质面积。研究结果为建立基于WSA压降特性的射流雾化与流场调控方法提供了理论依据。  相似文献   

7.
The breakup process of a single drop in homogeneous isotropic turbulence was studied using direct numerical simulations. A diffuse interface free energy lattice Boltzmann method was applied. The detailed visualization of the breakup process confirmed breakup mechanisms previously outlined such as initial, independent, and cascade breakups. High‐resolution simulations allowed to visualize another drop breakup mechanism, burst breakup, which occurs when the mother drop has a large volume, and the flow is highly turbulent. The simulations indicate that the type of the breakup mechanism is a strong function of mother drop size and energy input. Large mother drops in highly turbulent flow fields are more likely to burst, producing a large number of drops of the size close to the Kolmogorov length scale. Small drops in moderate turbulence tend to break only once (initial breakup). The interfacial energy of a drop was tracked as a function of time during drop deformation and breakage. The maximum energy level of the deformed mother drop was compared to commonly used estimates of critical energy necessary to break a drop. Our results show that these reference levels of critical energy are usually underestimated. Moreover, in some cases even if the critical energy level was exceeded, the drop did not break because the time of the interaction between the drop and the eddies was not enough to finish the breakup. The numerical insight presented here can be used as a guideline for the selection of assumptions and simplifications behind breakup kernels.  相似文献   

8.
Sustaining stable liquid‐liquid dispersion with the desired drop size still relies on experimental correlations, which do not reflect our understanding of the underlying physics and have a limited prediction capability. The complex behavior of liquid‐liquid dispersions inside a stirred tank, which is equipped with a Rushton turbine, was characterized by a combination of computational fluid dynamics and population balance equations (PBE). PBE took into account both the drop coalescence and breakup. With the increasing drop viscosity, the resistance to drop breakage also increases, which was introduced by the local criteria for drop breakup in the form of the local critical Webber number (Wec). The dependency of Wec on the drop viscosity was derived from the experimental data available in the literature. Predictions of Sauter mean diameter agree well with the experimentally measured values allowing prediction of mean drop size as a function of variable viscosity, interfacial tension, and stirring speed. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2403–2414, 2015  相似文献   

9.
The mechanism of drop breakup inside SMX static mixers in the laminar flow regime was studied using experimental observations and computational fluid dynamics (CFD). The deformation and breakup of a single drop was simulated using the volume of fluid (VOF) model. It was observed that drops break up after collision with the leading edges and cross‐points of the bars in the SMX static mixer. It was found that drop collision with the bar cross‐points of the SMX static mixer elements is most effective for drop breakup. Elongation and folding result in drop breakup at the cross‐points.  相似文献   

10.
Viscoelastic fluids were injected into a high velocity airstream (200 m/s) to investigate how the addition of small polymer quantities to fluids significantly increase the resultant disseminated drop size. For each liquid tested several hundred resultant drops were sampled and measured using an automated image analyzer. The resultant mass median diameter (MMD) for a viscoelastic fluid was an order of magnitude larger than a comparable viscous Newtonian fluid. A relaxation time measured from a die swell experiment correlates the dissemination results suggesting, an elongational rather than shear breakup mechanism.  相似文献   

11.
12.
The dispersion or a low viscosity liquid into a high viscosity liquid was investigated in an agitated tank using a pitched blade turbine. The trailing vortex system was found to be responsible for the formation of ligaments and sheets of the low viscosity liquid. Dispersion, though, was found to occur due to: 1) the break-up of ligaments and 2) small drop production from large drops in a recirculation flow; both dispersion mechanisms were a classical Rayleigh type break-up. The drop size produced in the recirculation flow from large drops was on the order of those observed in the turbulent fragmentation mechanism. The flow, though, was entirely laminar.  相似文献   

13.
The dispersion or a low viscosity liquid into a high viscosity liquid was investigated in an agitated tank using a pitched blade turbine. The trailing vortex system was found to be responsible for the formation of ligaments and sheets of the low viscosity liquid. Dispersion, though, was found to occur due to: 1) the break-up of ligaments and 2) small drop production from large drops in a recirculation flow; both dispersion mechanisms were a classical Rayleigh type break-up. The drop size produced in the recirculation flow from large drops was on the order of those observed in the turbulent fragmentation mechanism. The flow, though, was entirely laminar.  相似文献   

14.
Nonlinear breakup of charged liquid jets is numerically analyzed in this work in the limit of a very small electrical Strouhal number Te/Tb≪1 (i.e. negligible charge relaxation effects, applicable to highly conducting liquids), where Te is the electric relaxation time of charges, and Tb is the breakup time in a Lagrangian framework following the liquid jet at its average axial velocity. The influence of the electrical Bond’s number and viscosity on (i) the capillary Rayleigh’s most probable breakup length, (ii) the breakup time, (iii) the volume of the satellite, and (iv) the charge of both main drop and satellite, are analyzed. The model is related to the microjet break-up phenomena in the electrospraying of liquids in steady cone-jet mode, and its range of applicability to those particular problems discussed. Previous experimental results [Mutoh et al., 1979, Convergence and disintegration of liquid jets induced by an electrostatic field. J. Appl. Phys. 50, 3174–3179; Clopeau and Prunet-Foch, 1989, Electrostatic spraying of liquids in cone-jet mode. J. Electrostatics 22, 135–159.] support our numerical finding that the influence of the electrical Bond’s number on Rayleigh’s length is small within the usual parametrical limits of stability of a steady Taylor cone-jet at atmospheric pressure.  相似文献   

15.
The deformation and breakup of a single polycarbonate (PC) drop in a polyethylene (PE) matrix were studied at high temperatures under simple shear flow using a specially designed transparent Couette device. Two main breakup modes were observed: (a) erosion from the surface of the drop in the form of thin ribbons and streams of droplets and (b) drop elogation and drop breakup along the axis perpendicular to the velocity direction. This is the first time drop breakup mechanism (a), “erosion,” has been visualized in polymer systems. The breakup occurs even when the viscosity ratio (ηr) is greater than 3.5. although it has been reported that breakup is impossible at these high viscosity ratios in Newtonian systems. The breakup of a polymer drop in a polymer matrix cannot be described by Capillary number and viscosity ratio only; it is also controlled by shear rate, temperature, elasticity and other polymer blending parameters. A pseudo first order decay model was used to describe the erosion phenomenon and it fits the experimental data well.  相似文献   

16.
An investigation of drop formation in a recently developed spinning disk atomization (SDA) technique is presented. In‐situ observations of drop formation at the disk rim, using a high speed imaging installation, are made. Atomizations covering two orders of magnitude in flow rate show that ligaments can also form at low flow rates. Sequences of pictures indicate that drops undergo a rotary motion as they detach from a ligament. In the direct drop regime, oscillating motions dominate. The effect of teeth shape at the disk rim on the resulting drops is compared. The effect on drop size and size distribution is found to decrease with increasing rotation rate and corresponding images are studied. Experiments with liquid viscosities ranging from 1 to 120 mPas reveal a fundamental difference in drop breakup, but a negligible change in drop size. Likewise, only a small effect of liquid density is detected. The surface tension's influence on the liquid spreading at the disk rim is described and the subsequent drop formation is qualitatively analyzed.  相似文献   

17.
By releasing liquid drops in turbulent jet flows,we investigated the transformation of single drop breakup from binary to ternary and multiple.Silicone oil and deionized water were the dispersed phase and con-tinuous phase,respectively.The probability of binary,ternary,and multiple breakup of oil drops in jet flows is a function of the jet Reynolds number.To address the underlying mechanisms of this transfor-mation of drop breakup,we performed two-dimensional particle image velocimetry(PIV)experiments of single-phase jet flows.With the combination of drop breakup phenomenon and two-dimensional PIV results in a single-phase flow field,these transformation conditions can be estimated:the capillary number ranges from 0.17 to 0.27,and the Weber number ranges from 55 to 111.  相似文献   

18.
Experiments were carried out to study the stability of jets in immiscible liquid systems under conditions where the jet velocity relative to continuous phase was zero. The laminar breakup lengths and the diameter of drops formed from laminar jets are in good agreement with the stability analysis for stationary column while breakup data for jets injected into quiescent liquids disagree with it. An approximate solution for theoretical drop size is presented. The experiment also showed that the hydrodynamic resistance of continuous phase increases the growth rate of disturbances but does not affect the wave length.  相似文献   

19.
Measurements using two‐dimensional Phase Doppler Anemometry as well as high speed cinematography in free jets at several nozzle exit pressures and mass flow rates, show that the Sauter mean droplet diameter decreases with increasing air and liquid‐phase mass flow ratio due to the increase of the air stream impact on the liquid phase. This leads to substantial liquid fragmentation, respectively primary droplet breakup, and hence, satellite droplet formation with small sizes. This trend is also significant in the case of a liquid viscosity higher than that of water. The increased liquid viscosity stabilizes the droplet formation and breakup by reducing the rate of surface perturbations and consequently droplet distortions, ultimately also leading, in total, to the formation of smaller droplets. The droplet velocity decreases with the nozzle downstream distance, basically due to the continual air entrainment and due to the collisions between the droplets. The droplet collisions may induce further liquid fragmentation and, hence, formation of a number of relatively smaller droplets respectively secondary breakup, or may induce agglomeration to comparatively larger liquid fragments that may rain out of the free jet.  相似文献   

20.
The direct experimental data for breakup parameters of drop breakup time, multiple breakage, and breakup rate are urgently required to understand drop breakup phenomena. In this regard, drop breakup experiments were carried out in a stirred tank using a high-speed online camera. The influences of the rotating speed, interfacial tension, and drop viscosity on the above breakup parameters were then quantitatively investigated. An mechanism correlation for the breakup time is proposed and is further verified by comparing with the results of Solsvik and Jakobsen (Chem Eng Sci, 2015;131:219-234). The percentage of multiple breakage comparing to binary breakup was statistically counted. The results indicated that the dimensionless drop diameter η = d/dmax can be adopted to characterize the proportion of binary breakup. Finally, the breakup rate was experimentally measured and the breakup probability was calculated using the inverse method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号