首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of near-surface graded-gap layers on the electrical characteristics of MIS structures fabricated based on heteroepitaxial Hg1 ? x Cd x Te films grown by molecular beam epitaxy with a two-layer SiO2/Si3N4 insulator and anodic oxide film is studied experimentally. It is shown that a larger modulation of capacitance (depth and width of the valley) is observed compared with the structures without the graded-gap layer. The field dependences of photovoltage of MIS structures with the graded-gap layers had a classical form and were characterized by a drop only in the enrichment region. For the structures without the graded-gap layer with x = 0.22, a drop in the voltage dependence of the photocurrent is observed in the region of pronounced inversion. This drop is governed by limitation of the space charge region by processes of tunneling generation via deep levels. The properties of the HgCdTe-insulator interfaces are studied.  相似文献   

2.
The initial nucleation of GaSb on (001) GaAs substrates by metalorganic vapor phase epitaxy has been investigated using transmission electron microscopy (TEM) and high resolution electron microscopy (HREM). TEM results showed that the GaSb islands experience a morphological transition as the growth temperature increases. For growth at 520°C, the islands are longer along the [110] direction; at 540°C, they are nearly square, and at 560°C, they are longer along the direction. Possible mechanisms are proposed to describe such a transition. TEM and HREM examination showed that lattice misfit relaxation mechanisms depend on the growth temperature. For the sample grown at 520°C, the lattice mismatch strain was accommodated mainly by 90° dislocations; for the sample grown at 540°C, the misfit strain was relieved mostly by 90° dislocations with some of 60° dislocations, and for the sample grown at 560°C, the strain was accommodated mainly by 60° dislocations which caused a local tilt of the GaSb islands with respect to the GaAs substrate. The density of threading dislocations was also found to be dependent on the growth temperature. Mechanisms are proposed to explain these phenomena.  相似文献   

3.
Reports improvements in resonant tunnelling through AlGaAs/GaAs double barrier quantum wells grown by metalorganic vapour-phase epitaxy. At room temperature peak-to-valley current ratios up to 2.4 and peak current densities of 1.9*10/sup 4/ A/cm/sup 2/ are obtained.<>  相似文献   

4.
《Solid-state electronics》1986,29(2):215-227
Recent developments in the studies of GaAs/GaAlAs multi-quantum-well (MQW) structures using high-resolution photoluminescence spectroscopy are reviewed. Results discussed in this paper are all obtained in quantum wells grown using molecular-beam epitaxy (MBE). The observed linewidths of the excitonic transitions are very small (in many cases < 0.2 meV), thus indicating a high quality of the quantum wells. Theories of crystal growth by MBE using Monte Carlo techniques and of excitonic lineshape in quantum wells are reviewed. Based on the observed linewidths of the excitonic transitions, a microscopic model for the GaAs/GaAlAs interface is proposed. Variations of the energies of the various transitions in MQW structures as a function of the well size are presented and are compared with the available calculations. The behavior of the excitonic transitions as a function of temperature and applied electric field is also reviewed.  相似文献   

5.
6.
Measurements on low-temperature GaAs epitaxial layers (LT-GaAs) grown by molecular beam epitaxy and migration enhanced epitaxy showed that the excess arsenic incorporated during growth played a crucial role in determining their electrical properties. The electrical transport in LT-GaAs grown by a standard molecular beam epitaxy proceeded mainly via a hopping process, which showed a higher activation energy and onset temperature than those usually observed in lightly doped semiconductors. Using migration enhanced epitaxy to grow LT-GaAs, we were able to substantially reduce the density of As-rich defects and to achieve a good Hall mobility in Be-doped LT-GaAs. The study presented here indicates that, with controlled excess arsenic incorporation during growth, LT-GaAs can vary in a range of conduction properties and thus can be engineered for different device applications.  相似文献   

7.
介绍一种用于扫描近场光学显微术(NSOM)传感头的GaAs微探尖的生长剥离技术.通过SiO2掩膜窗口,利用一次选择液相外延制备周期性阵列的GaA微探尖.在GaAs衬底与GaAs微探尖之间引入AlGaAs层,并对窗口大小的AlGaAs层进行选择腐蚀,将单个GaAs微探尖从GaAs衬底上剥离下来.扫描电子显微镜显示的结果表明,此微探尖具有金字塔结构、表面光滑凡转移过程无损伤.这种技术制备的GaAs微探尖的形貌与质量主要由晶体的结构决定,具有可重复,表面光滑、适合批量生产的优点.  相似文献   

8.
Using elementary Se we grew Se-doped GaAs films on GaAs (111), (411), (711) and (100) substrates by molecular beam epitaxy. The films grown on all the high-index substrates showed n-type conduction and the maximum carrier concentration reached 2.1 × 1019 cm−3 for the film grown on the (411)B substrate. The carrier concentration began to saturate at a Se concentration near 1019 cm−3 but continued to increase up to a Se concentration of 2 × 1020 cm−3. Above 2 × 1020 cm−3 Se concentration, slow reduction of the carrier concentration was observed. We obtained excellent surface morphology when n-type GaAs films were grown on (411)A and (711)B substrates even at a Se concentration of 7 × 1020 cm−3.  相似文献   

9.
A novel heterojunction phototransistor (HPT) structure is proposed using two base regions such that the emitter-base depletion region is located in the wide-gap material. Very small area HPTs have been fabricated on semi-insulating substrates. Maximum current gain is ? = 300. The response time, with rise time as short as 250 ps and FWHM = 320 ps, has been obtained using a picosecond pulse dye laser.  相似文献   

10.
Gallium-arsenide p?n junction hyperabrupt varactor diodes have been grown by molecular-beam epitaxy. Near the junction the donor profile at depth x tracked x?1.2. A capacitance ratio C0/C12 of 10 is observed for bias voltages of 0 and 12 V.  相似文献   

11.
Significant progress in improving the performance of blue-green II-VI semiconductor injection lasers has come about from advances in the epitaxial growth and doping of ZnMgSSe on GaAs substrates. This paper investigates electrical transport and its relation to structural quality in n-type Zn1-yMgy SxSe1-x epilayers doped with Cl, grown by molecular beam epitaxy. The composition parameters x and y vary from about 0.12-0.18 and 0.08-0.15, respectively. The quaternary epilayers studied are lattice-matched (or nearly so) to the GaAs substrate. Temperature-dependent Hall-effect measurements are performed on seven n-type ZnMgSSe:Cl epilayers, and a technique is presented whereby the resulting mobility-vs-temperature data is compared with data for ZnSe to obtain a structural figure of merit that is useful in characterizing the quaternary epilayer.  相似文献   

12.
Light-emitting diodes for the wavelength range λ=3.3–4.5 µm were fabricated on the basis of InAsSbP/InAsSb heterostructures grown by metal-organic vapor-phase epitaxy. The use of vapor-phase epitaxy made it possible to appreciably increase the phosphorus content in barrier layers (up to 50%) in comparison with that attainable in the case of liquid-phase epitaxy; correspondingly, it was possible to improve confinement of charge carriers in the active region of the structures. Photoluminescent properties of InAsSb layers, electroluminescent properties of light-emitting diodes, and dependences of the emission power on current were studied. Two types of light-emitting diodes were fabricated: (i) with extraction of emission through the substrate (type A) and (ii) with extraction of emission through the epitaxial layer (type B). The light-emitting diodes operating in the pulse mode (with a relative pulse duration of 20) had an emission power of 1.2 mW at room temperature.  相似文献   

13.
Epitaxial undoped and doped (Si and Zn) GaAs and GaAIAs layers as well as heterostructures of GaAs/GaAIAs have been grown in an atmospheric pressure, vertical MOCVD system. Room temperature photoreflectance (PR) has been applied to characterise the layers and heterostructures as well as multiple quantum wells. The surface- and interface-related PR has been studied by application of Kramers–Kronig analysis. A decomposition of the PR spectrum into spectra connected with the surface region and with the interface has been proposed.  相似文献   

14.
The microstructure of p-n device structures grown by liquid-phase epitaxy (LPE) on CdZnTe substrates has been evaluated using transmission electron microscopy (TEM). The devices consisted of thick (∼21-μm) n-type layers and thin (∼1.6-μm) p-type layers, with final CdTe (∼0.5 μm) passivation layers. Initial observations revealed small defects, both within the n-type layer (doped with 8×1014/cm3 of In) and also within the p-type layer but at a much reduced level. These defects were not visible, however, in cross-sectional samples prepared by ion milling with the sample held at liquid nitrogen temperature. Only isolated growth defects were observed in samples having low indium doping levels (2×1014/cm3). The CdTe passivation layers were generally columnar and polycrystalline, and interfaces with the p-type HgCdTe layers were uneven. No obvious structural changes were apparent in the region of the CdTe/HgCdTe interfaces as a result of annealing at 250°C.  相似文献   

15.
Electrical and structural measurements have been performed on novel test structures incorporatingp-type GaAs epilayers grown by organometallic vapor phase atomic layer epitaxy on the vertical sidewalls of semi-insulating GaAs rods formed by ion-beam-assisted etching. Preliminary results indicate that the vertical-sidewall epilayers have excellent crystal quality and sufficient electrical quality to support a sidewall-epitaxy device technology. Some examples of candidate electronic, electrooptic, and photonic devices for vertical-sidewall fabrication are FETs, resistors, waveguides, modulators, and quantum-wire and quantum-dot lasers.  相似文献   

16.
Conductive Be doped GaAs grown by molecular beam epitaxy at low substrate temperatures (300° C) was obtained for the first time by using migration enhanced epitaxy (MEE) without subsequent annealing. The layers were characterized using Hall effect, double crystal x-ray diffraction, and photoluminescence. With low arsenic exposure, the low temperature MEE layers doped with Be had the same carrier density and similar luminescent efficiency as layers grown by conventional MBE at 580° C. Mobility at 77 K was reduced somewhat for layers doped at 2 × 1017cm−3, which also exhibited hopping conductivity below 40 K. Double crystal x-ray diffraction showed that low temperature MEE samples grown at low As exposure had the narrow linewidth associated with conventional MBE material grown at 580° C, unlike layers grown by conventional MBE at low temperatures, which exhibit an expansion in lattice parameter.  相似文献   

17.
The GaAs based InGaAs metamorphic structures and their growth by molecular beam epitaxy (MBE) are investigated. The controlling of the source temperature is improved to realize the linearly graded InGaAs metamorphic structure precisely. The threading dislocations are reduced. We also optimize the growth and annealing parameters of the InGaAs quantum well (QW). The 1.3-μm GaAs based metamorphic InGaAs QW is completed. A 1.3-μm GaAs based metamorphic laser is reported.  相似文献   

18.
Indium-doped GaAs layers are investigated by low-field Hall effect, photoluminescence, and double crystal x-ray diffraction in order to study the influence of the In concentration on the electrical, optical, and crystallographic properties. The layers were grown by liquid phase epitaxy from solution with In concentrations in the range 0–10 at.%. It was found that epitaxial growth from the melt with 7 at.% In content produces the highest quality epitaxial layers.  相似文献   

19.
Distribution of indium atoms in structures which contained double InGaAs/GaAs quantum wells and were grown by vapor-phase epitaxy from metal-organic compounds was studied. Experimental indium-concentration profiles were obtained using Auger electron spectroscopy. A model of growth with allowance made for indium segregation and a model for the Auger profiling were used in the calculations of profiles. Fitting calculated profiles to experimental ones made it possible to estimate the activation energies for In-Ga exchange in the context of a kinetic model for segregation. These energies are found to be somewhat higher than those that are well known for molecular-beam epitaxy, which is related to stabilization of the growth surface by hydrogen atoms in a vapor-phase reactor.  相似文献   

20.
Samples of molecular beam epitaxial GaAs grown at low temperatures doped with Be defects are studied as a function of growth temperature (TG)-by measuring their localized vibrational modes at 77K using BOMEM Fourier transform infrared spectrometer. Localized vibrational modes of9BeGa in samples grown at TG>350°C have been identified at 482 cm−1. Secondary ion mass spectroscopy measurements show that the densities of Be defects remain approximately constant as TG is lowered, however, additional structure in the9BeGa localized vibrational mode is observed. Calculations based on Green's function theory suggest that the additional structure in Be-doped LT GaAs can best be explained in terms of a complex center [9BeGa-AsGa] involving an intrinsic defect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号