首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper reports the results of a comprehensive research programme on two different compressor disc alloys: titanium alloy Ti 6246 and the nickel based superalloy Udimet 720Li. Both alloys are used for disc applications in gas turbine engines under conditions where the rims are exposed to fatigue, creep and environmental damage. The titanium alloy was investigated at temperatures of 80, 450, 500 and 550 °C, whilst the nickel at 650 and 700 °C. The paper presents the strain-life response of plain specimens and relates these data to notch fatigue behaviour. It also explores fatigue crack propagation behaviour in air and under hard vacuum (10−6 Torr), in order to characterise the creep/environment/fatigue interactions that occur at the crack tip. The growth data encompass R values of −3 to 0.5 for cyclic and dwell waveforms. The information obtained allows the effects of environment and creep at these temperatures to be partitioned. The observed R value dependence is related to both empirical models and closure measurements. The experimental data are supported by detailed metallographic and fractographic studies using optical and SEM techniques.  相似文献   

2.
The fatigue life of SUH660 steel is dominated by crack initiation in the region of very high cycle fatigue owing to the new crack initiation behavior near the tip of temporarily arrested crack. The effect of internal hydrogen on very high cycle fatigue life is investigated focused on crack initiation life via fatigue and Vickers hardness tests. Hydrogen inhibits cracks initiation, and accelerates the increase in crack initiation lives with decreasing stress in low and medium hardness zones. Hydrogen increases the hardness in low and medium hardness zones. Hydrogen extends new crack initiation lives and causes longer very high cycle fatigue life.  相似文献   

3.
A refined non-linear creep analysis of ceramic coatings has been performed by means of an improved substrate curvature technique in vacuum facilitating increased sensitivity by noise reduction. In this way the intrinsic stress profile may be derived from the time-dependent substrate curvature. Creep and stress parameters of 0.5 μm (Ti,Al)N-coatings have been found. At 500 °C the stress varies between − 1 GPa at the surface and + 0.2 GPa at the interface with the silicon substrate. From the onset of crack formation as observed in cyclic laser shock experiments a coating tensile strength of about 0.7 GPa is deduced. The number of cycles to cracking and delamination/spalling vs. maximum coating temperature as derived from creep simulation agrees quantitatively rather well with the experimental data. A rough estimate of the interface fracture toughness on WC/Co substrates yields 11 N/m as a lower bound.  相似文献   

4.
Hydrogen attack (HA) is the development of grain-boundary porosity by cavities filled with high-pressure methane that originates from the reaction of carbides with hydrogen at high temperatures. The cavities grow by grain-boundary diffusion and by creep of the adjacent grain material till they coalesce with neighbouring cavities to form a microcrack. Earlier work on HA has focussed on unit cells containing a single cavity, using average cavitation properties. Here, non-uniform cavitation properties on the grain-size scale are assumed in a polycrystalline aggregate, and unit cell analyses are performed to investigate the influence of the adjacent grains on the development of the grain-boundary HA. The numerical results are explained in terms of two simplified models which highlight the key parameters governing the grain deformation-grain boundary cavitation interaction process.  相似文献   

5.
The purpose of the present article is to demonstrate how fatigue failure maps can be constructed for fiber-reinforced titanium alloys. The maps are constructed using a combination of micromechanical models and experimental measurements of fatigue cracking and fracture. The maps are used to identify the regimes in which various failure mechanisms dominate. Moreover, they provide information about the fatigue life and the critical amount of crack extension at failure. Examples of such maps for a well-characterized titanium matrix composite are presented and used to illustrate the sensitivity of fatigue life and critical crack extension to both the applied stress and the length of pre-existing cracks or notches.  相似文献   

6.
Fatigue crack growth behaviour of Ti–6Al–2Zr–1.5Mo–1.5V (VT-20 a near-α Ti alloy) was studied in lamellar, bimodal and acicular microstructural conditions. Fatigue crack growth tests at both increasing and decreasing stress intensity factor range values were performed at ambient temperature and a loading ratio of 0.3 using compact tension samples. Lamellar and acicular microstructures showed lower fatigue crack growth rates as compared to the bimodal microstructure due to the tortuous nature of cracks in the former and the cleavage of primary α in the latter. The threshold stress intensity factor range was highest for acicular microstructure.  相似文献   

7.
The beneficial effects of cold expansion have been well documented in previous studies, yet the performance of cold expanded plates exposed to elevated temperatures is an area of technical interest. In this research, finite element (FE) simulations along with experimental fatigue tests have been carried out to investigate the effect of exposure to elevated temperature on residual stress distribution and subsequent fatigue life of cold expanded fastener holes. According to the obtained results, creep stress relaxation occurs due to exposure to 120 °C for 50 h. FE results demonstrate a non-uniform residual stress relaxation regime through the plate thickness around the cold expanded hole and the fatigue test results show that the subsequent fatigue lives have significantly decreased.  相似文献   

8.
9.
Fatigue-crack-growth rate tests were conducted on compact specimens made of 2324-T39 aluminum alloy to study the behavior over a wide range in load ratios (0.1  R  0.95) and a constant Kmax test condition. Previous research had indicated that high R (> 0.7) and constant Kmax test conditions near threshold were suspected to be crack-closure free and that any differences were attributed to Kmax effects. During the tests, strain gages were placed near and ahead of the crack tip to measure crack-opening loads from local strain records on all tests, except R = 0.95. In addition, a back-face strain gage was used to monitor crack lengths and also to measure crack-opening loads from remote strain records. From local gages, significant amounts of crack closure were measured at the high-R conditions and crack-opening loads were increasing as the threshold condition was approached. Crack-closure-free data, ΔKeff (= U ΔK) against rate, were calculated. These results suggest that the ΔKeff against rate relation may be nearly a unique function over a wide range of R even in the threshold regime, if crack-opening loads were measured from local strain gages and not from remote gages. At low R, all three major shielding mechanisms (plasticity, roughness, and fretting debris) are suspected to cause crack closure. But at high R and Kmax tests, roughness and fretting debris are suspected to cause crack closure above the minimum load.  相似文献   

10.
Creep-fatigue tests have been performed on nickel base alloy Z5NCTA 33-21 grade 1. Hold time varied from 0, 10, 30, 90, 300, 1440 and 10,080 min at two values of strain range. It was found that the number of cycles to failure NR decreases with holding time tm, according to a power law:
NR=1.88×103·(tm)-0.39.  相似文献   

11.
It is well known that earthquakes can damage structures and machinery. After an earthquake, those components, which have been obviously damaged are scrapped and replaced, and most of the components which have not been obviously damaged will continue to be used even after earthquakes. However, as will be shown, the earthquake may have severely impaired the fatigue strength of such components by introducing unfavourable residual stresses and short cracks at stress raisers. In addition, if such components should contain hydrogen, an increasingly possible scenario for the hydrogen economy in the future, then it is shown that the loss of fatigue strength can be even greater. This paper explores the extent of fatigue degradation due to overloads and to absorbed hydrogen. It was shown that generation of small crack and tensile residual stress imposed by overloads caused substantial decrease of residual fatigue strength compared with that in the initial state. It was also shown that hydrogen enhanced more reduction. Hydrogen enhanced reduction in two ways. The crack generated by overloads grew deeper in hydrogen charged material. In addition to this, the reduction of ΔKth also occurred in hydrogen charged material. These two factors worked together to reduce the residual fatigue strength after multiple overloads.  相似文献   

12.
Based on the proposed concept of the fatigue threshold stress intensity factor ranges, a model has been developed that describes the kinetics of physically small fatigue crack and long fatigue crack growth. The model allows the calculation of the crack growth rate under the regular fully-reversed uniaxial loading from the data on the static characteristics of mechanical properties and the microstructure of the initial material. The crack depth at which the cyclic plastic zone size ahead of the crack tip will exceed the grain size should be considered as a criterion of the small-to-long crack transition. Under high-cycle fatigue conditions physically small fatigue crack growth will be divided into two phases of growth: the first phase is when the crack propagates along the slip planes of individual grains, and the second one is when the crack changes the mechanism of growth and propagates in the plane perpendicular to the loading direction. The model validity has been tested using the experimental data on the growth of the long cracks in specimens of titanium alloy VT3-1 in seven microstructural states and the small cracks in specimens of titanium alloy Ti–6Al–4V and aluminum alloy 2024-T3. Good agreement between the calculated and experimental results is obtained.  相似文献   

13.
Fatigue crack initiation behaviour is investigated at room temperature in the (α2-Ti3Al and γ-TiAl) alloy. High cycle fatigue tests ranging up to 1010 cycles are carried out on the powder metallurgy (P/M) bar specimens under different loading conditions with a stress ratio of R=0.1 and R=0.5. Microstructural characterization and fracture surface analysis are also investigated by optical (OM) and scanning electron microscopy (SEM). Ti–Al alloy studied here shows two phases in microstructure (nearly refined lamellar thickness) composed of α2-Ti3Al and γ-TiAl (hereafter called γ+α2 alloys) and fracture mechanism is explained with different plastic incompatibilities between the two phases.  相似文献   

14.
Additive manufacturing (AM) has achieved large attention within the aerospace industry mainly because of the possibility to lower the material and the manufacturing cost. For titanium alloys several AM techniques are available today. In the present paper, the focus has been on laser metal wire-deposition of Ti–6Al–4V. Walls were built and low cycle fatigue specimens were cut out in two orientations with respect to the deposition direction. An extensive fractographic evaluation was carried out after testing and the results indicated anisotropic behaviour at low strain ranges. Defects such as pores and lack of fusion (LoF) were observed and related to the fatigue life and specimen orientation. The LoF defects are regarded to have the most detrimental influence on the fatigue life, whilst the effect of pores was not as straightforward. Noteworthy in present study is that one large LoF defect did not influence the fatigue life, which is explained by the prevalence of the LoF defect in relation to the loading direction.  相似文献   

15.
The matrix cracking behavior of a new high-performance thermoplastic composite material, K3B/IM7, was systematically investigated. Laminates in various grouped thickness and ply stacking sequences, [02/902/02], [02/904/02], and a quasi-isotropic laminate [+45/0/−45/90]s were tested under static and tension–tension fatigue loading. Depending on the stacking sequence of the laminates and the type of loading, various matrix cracking behavior were found. Under static loading, the matrix cracks were mainly close to the specimen edges. A few cracks were found to penetrate the specimen width, even when the load was large enough to break the specimen. However, under fatigue cyclic load, the edge initiated cracks propagated fully across the specimen width. Combined with the fatigue Paris Rule and considering the ply thickness and stacking sequence, the energy release rate method was applied to predict the relations between the loading strain amplitude and fatigue cycles for matrix cracking failure.  相似文献   

16.
This paper deals with the role of microstructure on the fatigue behaviour of pearlitic steels with different degrees of cold drawing. The analysis is focussed on the region II (Paris) of the fatigue behaviour, measuring the constants (C and m) for the different degrees of drawing. From the engineering point of view, the manufacturing process by cold drawing improves the fatigue behaviour of the steels, since the fatigue crack growth rate decreases as the strain hardening level in the material increases. In particular, the coefficient m (slope of the Paris laws) remains almost constant and independent of the drawing degree, whereas the constant C decreases as the drawing degree rises. The paper focuses on the relationship between the pearlitic microstructure of the steels (progressively oriented as a consequence of the manufacturing process by cold drawing) and the macroscopic fatigue behaviour. To this end, a detailed metallographic analysis was performed on the fatigue crack propagation path after cutting and polishing on a plane perpendicular to the crack front (fracto-metallographic analysis). It is seen that the fatigue crack growth path presents certain roughness at the microscopic level, such a roughness being related to the pearlitic colony boundaries more than to the ferrite/cementite lamellae interfaces. Fatigue cracks are transcollonial and exhibit a preference for fracturing pearlitic lamellae, with non-uniform crack opening displacement values, micro-discontinuities, branchings, bifurcations and frequent local deflections that create microstructural roughness. The net fatigue surface increases with cold drawing due to the higher angle of crack deflections. With regard to the influence of the R-ratio, an increase of such a stress ratio produces microcracking with a higher number of branchings for the same stress intensity range.  相似文献   

17.
The material employed in the present work is a Ti6Al4V matrix composite unidirectionally reinforced with eight plies of SiC fibres. This paper studies the tensile behaviour and the fatigue fracture processes at the operation temperatures planned for these materials (550 and 600 °C). The fractographic analysis and microstructural observations of the tested samples at both temperatures are also presented. These are used to determine the mechanisms of nucleation and propagation of damage until fracture.  相似文献   

18.
The effects of Ti/TiN bi- and multilayered films on the fatigue performance of the Ti46Al8Nb alloy were investigated. Ti/TiN films with a total thickness of 1 μm were deposited on the Ti46Al8Nb alloy substrate by the hollow cathode deposition method. The samples were examined with various analytical techniques including nanoindentation, scratch test, stripping layer substrate curvature test and scanning electron microscopy. The results show that multilayered Ti/TiN films can enhance the fatigue strength of the Ti46Al8Nb alloy, whereas bilayered films have no obvious effect. Compared with the bilayer, the multilayer exhibits higher hardness, higher residual compressive stress and higher adhesion strength to the substrate. It is also demonstrated that the multilayer is responsible for retarding fatigue crack growth. All the superior properties make the hard Ti/TiN multilayer to be an effective protection coating for the enhanced fatigue strength of the brittle substrate.  相似文献   

19.
Previous papers have shown ΔKRP to be a useful parameter describing fatigue crack propagation behavior, where ΔKRP is an effective stress intensity factor range corresponding to the excess RPG load (re-tensile plastic zone's generated load) in which the retensile plastic zone appears under the loading process. In this paper, the relationship between ΔKRP and the zone size ( ) (which is smaller between the tensile plastic zone at maximum load and the compressive plastic zone at minimum load) was investigated using a crack opening/closing simulation model so as to consider a physical meaning of ΔKRP. As a result, it becomes clear that ΔKRP dominates the zone size where fatigue damage mostly occurs. This result supports the following crack propagation equation
where C and m are material constants.Simulation and fatigue crack propagation tests were then carried out for compact tension (CT), center cracked tension (CCT) and four points bend (4PB) specimens under constant amplitude loading to obtain C and m values for HT-50 steel. Fatigue crack propagation tests were also carried out under constant amplitude loading using CCT specimens with residual stress distribution due to flame gas heating at the center line or edge lines. The T specimen introduced tensile residual stress at the tip of a notch, and the C specimen introduced compressive residual stress. It therefore becomes clear that tensile residual stress leads to a decrease in RPG load, while compressive residual stress leads to increase in RPG load, and that the simulation results are in good agreement with the experimental RPG load. It also becomes clear that simulated crack growth curve using the simulated and the above equation is in good agreement with the experimental curve. It is understood that tensile residual stress creates only a slight increase in crack propagation rate and compressive residual stress create a big decrease a crack propagation rate.  相似文献   

20.
D.S. Jang  H.Y. Lee  J.J. Lee 《Thin solid films》2009,517(14):3967-3970
The optical and photocatalytic properties of TiO2 are closely related to crystalline structures, such as rutile and anatase. In this paper, TiO2 films were produced by inductively coupled plasma (ICP) assisted chemical vapor deposition (CVD) without extra heating of the substrate, and the effect of H2 addition on the structure and optical properties of the films was investigated. After increasing the partial pressure of H2, the structure of the TiO2 films changed from anatase to rutile, which usually appears at high temperatures (> 600 °C). The light transmittance decreased with increasing the H2 flow rate due to the increased surface roughness. The photocatalytic activity of the anatase TiO2 film was better than that of the rutile TiO2 film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号