首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 623 毫秒
1.
曲鹏  王英  张亚非 《微纳电子技术》2006,43(2):85-88,106
利用LB技术在Si(100)基片上制作了金纳米粒子单层膜,采用扫描电子显微镜(SEM)和原子力显微镜(AFM)对单层膜的表面形貌进行表征。实验结果表明,将表面压控制在22mN/m~26mN/m进行拉膜,可以得到大面积金纳米粒子的均匀致密单层膜。研究结果对于采用金纳米粒子单层膜构建DNA传感器和单电子器件方面具有重要的应用价值。  相似文献   

2.
金纳米粒子的电化学制备和AFM表征   总被引:1,自引:0,他引:1  
本文以高序石墨为基底,氯金酸溶液为支持电解质,以对表面破坏力小的轻敲模式原子力显微镜为观察手段,研究基底的表面状态及电沉积条件对形成的纳米颗粒尺寸和形态的影响,并简要讨论所形成的金纳米粒子的表面Raman增强效应和对乙二醇氧化的电催化效应。  相似文献   

3.
该文制备了巯基聚乙二醇(PEG)修饰的金纳米棒,该纳米材料在近红外区具有良好的光吸收特性,具备作为优良光声造影剂的潜质。该文通过透射电子显微镜(TEM)、紫外 可见(UV VIS)吸收光谱等测量手段对金纳米棒进行了形貌、结构、基本光学性能及光声成像效果等表征。实验结果表明,随着材料浓度的增加,体外光声信号的响应近似呈线性增长;经由PEG修饰,金纳米棒的生物相容性得到提高;PEG修饰后的金纳米棒对小鼠大脑皮层血管的成像效果得到提升。结果表明,PEG修饰的金纳米棒材料,在光声成像造影领域具有巨大的应用前景。  相似文献   

4.
基于模板合成法,在多孔氧化铝(PAA)模板上用磁控溅射沉积金薄膜,制备出高度有序的纳米金柱阵列结构.采用扫描电子显微镜(SEM)和原子力显微镜(AFM)对所加工的金柱阵列结构进行表征.所加工的纳米结构为柱状金纳米阵列,金柱直径约为φ60 nm,金柱尖端直径约φ20 nm,高度为300~600 nm,相邻金柱平均间距约为100 nm.纳米金柱阵列结构与多孔氧化铝模板(PAA)貌一致,阵列分布规则,柱体大小均匀.  相似文献   

5.
安捷伦科技公司日前宣布推出7500原子力显微镜(AFM),它设定了新的性能、功能和易用性标准,以进行纳米级测量、表征和操作。Agilent7500可以使用90μmAFM闭环扫描器获得原子级分辨率成像。  相似文献   

6.
自组装金纳米粒子薄膜AFM研究   总被引:2,自引:1,他引:1  
以化学还原法制备了金胶体,采用静电吸附自纽装法在单晶硅片表面制备了金纳米粒子薄膜,采用原子力显微镜分析了薄膜的表面形貌与结构。  相似文献   

7.
电子封装表面材料采用分子自组装技术制备了稀土La纳米膜,采用AFM(原子力显微镜)对组装膜的表面形貌进行表征,表征结果该稀土纳米膜表面形貌致密,表面粒子尺寸为20~30nm;场发射扫描电镜测试表明,该组装膜的成分为La;  相似文献   

8.
乙酰胆碱酯酶分子的原子力显微成像   总被引:5,自引:0,他引:5  
本文研究了用原子力显微技术对乙酰胆碱酯酶进行成像的方法。在新鲜裂解的云一表面镀一层金膜,金膜与疏基丙酸(MPA)的疏基形成S-Au键。使MPA的游离羧基再通过碳二亚胺反应与AChE的碱性氨基酸的氨基形成肽键连接,AChE因而被固定于支持物表面,这样固定的AChE可获得清晰成像而不脱落。  相似文献   

9.
利用磁控溅射方法在Si衬底上沉积钽层以及铜层,并利用纳米压痕技术对Cu/Ta/SiO_2/Si多层膜结构进行了硬度和弹性模量的表征,研究发现多层膜结构的硬度随着薄膜厚度的增加而降低,然而弹性模量与膜厚之间并没有这样的关系。利用聚焦离子束(FIB)工艺将纳米压痕区域剖开,并通过透射电子显微镜(TEM)表征发现在纳米压痕过后,钽以及二氧化硅界面有了明显的分层现象,这一点表明层与层之间较弱的键合在相对大的负荷下遭到了破坏。  相似文献   

10.
从Au纳米粒子出发,利用竖直浸渍提拉法(dip-coating)成功将Au纳米粒子负载于基底(云母片/单晶硅片),并以3-氨丙基三甲氧基硅烷(APTMS)对单晶硅片进行改性,得到具有密度分布不同的Au纳米粒子two dimensional(2D)组装结构,制备方法简单易行。利用原子力显微镜(AFM)表征了不同制备条件下Au纳米粒子在基底表面的分布状态,结果表明,Au纳米粒子溶胶和偶联剂APTMS的浓度以及浸渍时间对Au纳米粒子在单晶硅片表面的密度分布起到决定性作用。  相似文献   

11.
针对薄膜太阳能电池硅薄膜层吸收效率较低的问题,提出了运用金属纳米粒子局域表面等离子体共振(LSPR)增强太阳能电池的吸收效率,采用时域有限差分(FDTD)法,模拟计算了太阳能电池中不同厚度的硅薄膜层吸收特性,分析了不同几何参数的矩形Ag纳米粒子与Ag背反射膜对增强太阳能电池吸收效率的影响作用。计算结果表明,硅薄膜层厚度为500nm的太阳能电池具有较高的吸收效率,通过调整Ag纳米粒子的相关参数,有效地降低了太阳电池硅薄膜表面的反射损耗,取得最大吸收增强因子为1.35。Ag背反射膜有效地降低了Ag纳米粒子硅薄膜结构的透射损耗,其最大的吸收增强因子达到1.42。  相似文献   

12.
采用热注入法制备了Cu2ZnSnS4(CZTS)纳米颗粒,并形成高分散、稳定的"墨水",采用滴注方法形成CZTS前驱体薄膜。利用X射线衍射(XRD)、拉曼光谱(Raman)、透射电子显微镜(TEM)和紫外-可见光谱(UV-VIS)对CZTS纳米颗粒的晶体结构、表面形貌和带隙进行了表征。Raman数据显示合成的纳米颗粒为纯的CZTS,不存在ZnS和Cu2SnS3等杂相。傅里叶红外光谱(FTIR)和UV-VIS表明合成的CZTS纳米颗粒表面被油胺(OLA)包覆,并且其带隙为1.52 eV。对CZTS前驱体薄膜在硫化氢气氛和固态硒气氛中退火处理,得到铜锌锡硫硒(CZTSSe)薄膜。结果表明,经硫化氢处理后薄膜表面平整但CZTS晶粒并没长大,而经过固态硒处理后得到了结晶质量较好的CZTSSe薄膜。  相似文献   

13.
垂直靶向脉冲激光沉积制备ZnO纳米薄膜   总被引:2,自引:2,他引:0  
用一种新颖的制备纳米粒子与薄膜的垂直靶向脉冲激光沉积(VTPLD)方法,在室温及空气气氛下,于玻璃基底上成功地制备出ZnO纳米薄膜.用扫描电子显微镜(SEM)和X射线衍射(XRD)仪对ZnO纳米薄膜的表面形貌和结构进行了表征,用荧光光谱仪对薄膜的光致发光(PL)性能进行了测量.结果表明,当激光功率为13 W时,沉积出的粒子大小较均匀,尺寸在40 nm左右,且粒子排列呈现出一定方向性;当激光功率为21 W时,沉积的ZnO纳米薄膜图呈现出微纳米孔的连续薄膜.在玻璃基底上沉积的ZnO纳米薄膜有一主峰对应的(002)衍射晶面,表明ZnO纳米薄膜具有良好的c轴取向性.不同激光功率下沉积ZnO纳米薄膜经500 ℃热处理后的PL峰,其强度随激光能量而变化,最大发光波长位于412 nm.  相似文献   

14.
金纳米粒子LB单层膜的制备及其I-V特性   总被引:3,自引:0,他引:3  
在不同条件下采用LB技术制备了金纳米粒子单层膜,并利用SEM对所得到的薄膜的表面形貌进行表征。结果表明决定薄膜质量的关键因素是表面压。将表面压控制在22~26mN/m的范围内以较慢的拉膜速度在Si(100)基底上进行拉膜,可以得到大面积金纳米粒子的均匀致密单层膜。在室温下测量两点之间单层膜的I-V特性,得到了非欧姆特性,这是由电子在电场作用下发生隧穿产生的。  相似文献   

15.
祝雷  吴世法  李亚琴 《激光杂志》2007,28(6):84-84,86
本文利用时域有限差分法(FDTD)模拟了在p极化平面波侧向照射下,扫描近场光学显微镜镀银膜四面锥形探针扫描直径30纳米银球"热点"处的电场增强因子及最佳条件.我们得出了膜厚和探针与银球之间间隙的最佳条件:间隙3纳米时最佳膜厚为20~50纳米,此时的场增强因子最强为70左右;膜厚30纳米时,间距1纳米增强因子最强为298.  相似文献   

16.
Au纳米粒子二维周期阵列的LSPR消光特性分析   总被引:6,自引:6,他引:0  
采用离散偶极子近似(DDA)方法,对不同间距的Au纳米粒子阵列在不同介质情况下的消光特性进行仿真分析。分析结果表明,消光峰值波长和强度随纳米粒子间距的减小而增大,但在间距较大的情况下折射率灵敏度基本不变。实验测量结果也表明,不同的密度分布的Au纳米球阵列对应了基本相同的折射率灵敏度。因此,在纳米粒子间距较大时,纳米粒子阵列局部分布的不均匀不会改变整体的折射率灵敏度,相同的消光峰值波长红移量对应相同的介质折射率变化量。  相似文献   

17.
Titania nanoparticles (TNPs) were synthesized by a sol–gel method in our laboratory using titanium tetrachloride as the precursor and isopropanol as the solvent. The particles׳ size distribution histogram was determined using ImageJ software and the size of TNPs was obtained in the range of 7.5–10.5 nm. The nanoparticle with the average size of 8.5 nm was calculated using Scherrer׳s formula. Homogeneous and spherical nanoparticles were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM) and UV–visible spectroscopy (UV–vis). The X-ray powder diffraction analysis showed that the prepared sample (TNPs) has pure anatase phase. TNPs were deposited on porous polycrystalline silicon (PPS) substrate by electron beam evaporation. The TNPs thickness was 23±2 nm at 10−5 mbar pressure at room temperature. Porosity was performed by an anodization method. Since polycrystalline silicon wafers consist of different grains with different orientations, the pore size distribution in porous layer is non-uniform [1]. Therefore, the average diameter of pores can be reported in PPS layer analysis. Average diameter of pores was estimated in the range of 5 μm which was characterized by FESEM. The nanostructured thin films devices (Al/Si/PPS/TNPs/Al and Al/Si/PPS/Al) were fabricated in the sandwich form by aluminum (Al) electrodes which were also deposited by electron beam evaporation. Electrical measurements (IV curves) demonstrated the semiconducting behavior of thin film devices. The gas sensitivity was studied on exposure to 10% CO2 gas. As a result, conductivity of devices increased on exposure to CO2 gas. The device with TNPs thin film (Al/Si/PPS/TNPs/Al) was more sensitive and, had better response and reversibility in comparison with the device without TNPs thin film (Al/Si/PPS/Al).  相似文献   

18.
This study proposes a novel and highly secure encryption technology based on plasmonic‐enhanced upconversion luminescence (UCL). The technology can be realized by a disordered plasmonic nanostructure composed of a transferred metal nanoparticle–UC nanocrystals (UCNC)–metal (tMUM) film using the graphene transfer process, in which the metal nanoparticles that formed on the graphene layer are transferred using Scotch tape. The plasmonic tMUM film strongly enhances the UCL by a factor of 200 mainly because of the excitation of the gap plasmon polaritons. Meanwhile, the UCNCs in direct contact with the metal film result in luminescence quenching caused by a nonradiative process. Herein, a highly secure anti‐counterfeit film is developed, which is very hard to duplicate and cannot be reused, using two conflicting features (i.e., emission enhancement and quenching phenomena). The UCL is strongly amplified only when the first (i.e., a random metal nanoparticle array) and second (i.e., UCNCs on a Ag film) codes are very precisely overlapped as designed, thereby generating the originally designed final code. Therefore, our novel high‐level security device is expected to be easily applied to protect and identify genuine products.  相似文献   

19.
Detailed investigation of superconducting films of YBa2Cu3O7-δ (YBCO) prepared from solution-based precursors have been performed. Two precursors have been compared in this study: the presently used trifluoroacetate (TFA) solution and a recently developed colloidal suspension containing nanoparticles of mixed oxide. Detailed analyses of the evolution of microstructure and chemistry of the films have been performed, and process parameters have been correlated with final superconducting properties. Both films need two heating steps: a low temperature calcination and a higher temperature crystallization step. For TFA films, it was seen that the heating rate during calcination needs to be carefully optimized and is expected to be slow. For the alternate process using a nanoparticle precursor, a significantly faster calcination rate is possible. In the TFA process, the Ba ion remains as fluoride and the Y remains as oxyfluoride after calcination. This implies that, during the final crystallization stage to form YBCO, fluorine-containing gases will evolve, resulting in residual porosity. On the other hand, the film from the nanoparticle process is almost fully oxidized after calcination. Therefore, no gases evolve at the final firing (crystallization) stage, and the film has much lower porosity. The superconducting properties of both types of films are adequate, but the nanoparticle films appear to have persistently higher J c values. Moreover, they show improved flux pinning in higher magnetic fields, probably due to nanoscale precipitates of a Cu-rich phase. In addition, the nanocolloid films seem to show additionally enhanced flux pinning when doped with minute amounts of second phase precipitates. It therefore appears that, whereas the TFA process is already quite successful, the newly developed nanoparticle process has significant scope for additional improvement. It can be scaled-up with ease, and can be easily adapted to incorporate nanoscale flux pinning defects for in-field performance.  相似文献   

20.
Triplet-based Spike Timing Dependent Plasticity (TSTDP) is an enhanced synaptic plasticity rule which can be implemented using new nano-scale technologies. Nanocrystalline-silicon thin film transistors (TFT) and memristors are of these nano-scale devices which can be integrated into three-dimensions using low-temperature processing. This paper proposes a new hybrid TFT-memristive circuit that implements the TSTDP. The proposed circuit is composed of two nanoparticle memory-TFTs in series with a current/charge controlled memristor, as the synapse. Our simulation results, using spike pairs with various timing intervals and frequencies, as well as different spike triplets, demonstrate a particularly close match to realistic biological measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号