首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The atomic structure of a new ternary phase UFe2Al10 appearing in the U–Fe–Al system was determined using direct methods applied to X-ray powder diffraction data. High resolution electron microscopy combined with the methods of crystallographic image processing was used for the verification of the structural model. The UFe2Al10 phase is orthorhombic and belongs to Cmcm space group, its unit cell contains 40 Al, eight Fe, and four U atoms. The lattice parameters obtained after Rietveld refinement are: a=8.919 Å, b=10.208 Å, and c=9.018 Å. The reliability factors characterizing the Rietveld refinement procedure are: Rp=5.9%, Rwp=8.1%, and Rb=2.9%.  相似文献   

2.
The crystallographic and the Curie temperature of the Sm2Fe17−xCrxC2 (x=0.5, 1, 1.5 and 2) carbides have been extensively studied. X-ray diffraction studies have shown that all these alloys are approximately single phases corresponding to the Th2Zn17 type rhombohedral structure with a small amount of -Fe. The amount of this residual -Fe phase decreases with increasing the Cr atomic content. It decreases from 1 wt% for x=0.5 to 0.4 wt.% for x=2. The lattice parameter c increases as a function of the Cr atomic content x from x=0 to x=1.5 and then decreases. This is due to the Cr atoms which prefer to substitute the Fe atoms in the 6c sites located along the c-axis. The lattice parameter a and the unit-cell volume decrease in all substitution ranges. The insertion of the C atoms leads essentially to an increase of the distances between the 9d and 18h sites and the 9d–18f sites. The Curie temperature reaches a maximum value of 583 K for x=1.5 and then decreases to 551 K for x=2. The enhancement of the Tc for lower Cr contents is due to a lowering of the hybridization of the iron atoms with their neighbors, the magnetovolume effect and the reduction of antiferromagnetic interactions. However, the decrease in Tc for higher Cr content is due to the reduction in the number of Fe–Fe pairs due to the magnetic dilution effect. For given interatomic distances, the exchange coupling of the Cr–Cr atoms is not of antiferromagnetic type and the exchange integral of the Cr–Cr pair is higher than that of the Fe–Fe pair.  相似文献   

3.
We have investigated the Yb3+ crystal-field-level structure in YbVO4 using inelastic magnetic neutron-scattering measurements and crystal-field model calculations. We determined the temperature dependence of the a and c lattice parameters of the tetragonal unit cell by neutron diffraction and observed a minimum at ca. 120 K in the c lattice parameter. This anomaly in the thermal expansion is interpreted as arising from a coupling of the anisotropic low-lying crystal-field states of the Yb3+ ions and the crystal lattice at low temperatures.  相似文献   

4.
The crystal structure of new ternary R3Si1.25Se7 (R = Pr, Nd and Sm) compounds (Dy3Ge1.25S7 structure type, Pearson symbol hP22.5, space group P63, a = 1.05268 (3) nm, c = 0.60396 (3) nm, RI = 0.0897 for Pr3Si1.25Se7; a = 1.04760 (3) nm, c = 0.60268 (3) nm, RI = 0.0891 for Nd3Si1.25Se7; a = 1.04166 (6) nm, c = 0.59828 (6) nm for Sm3Si1.25Se7) was determined using X-ray powder diffraction. The nearest neighbours of the R and Si atoms are exclusively Se atoms. The latter form distorted trigonal prisms around the R atoms, octahedra around the Si1 atoms and tetrahedra around the Si2 atoms. Tetrahedral surrounding exists for Se1 and Se3 atoms. Six neighbours surround every Se2 atom.  相似文献   

5.
A new compound CePt2+xSb2−y (x = 0.125, y = 0.25) was synthesized by arc-melting of the elements. The chemical and structural characterizations were carried out at room temperature on as-cast samples using X-ray diffractometry, metallographic analysis and EDS-microanalysis. According to the results of X-ray single crystal diffraction this antimonide crystallizes in I4cm space group (no. 108), Z = 32, ρ = 12.19 Mg/m3, μ = 89.05 mm−1 (a = 12.5386(3) Å, c = 21.4692(6) Å (crystal I) and a = 12.5455(2) Å, c = 21.4791(5) Å (crystal II)). The structure and composition were confirmed by powder X-ray diffraction (a = 12.4901(2) Å, c = 21.3620(4) Å) and EDS-microanalysis respectively. Isotypic compounds were observed with La and Pr from X-ray powder diffraction of as-cast alloys at room temperature (a = 12.6266(4) Å, c = 21.4589(6) Å for LaPt2+xSb2−y and a = 12.5184(5) Å, c = 21.4178(7) Å for PrPt2+xSb2−y). The CePt2+xSb2−y structure is derived from CaBe2Ge2 (a = 2a0 − 2b0, b = 2a0 + 2b0, c = 2c0) and comprises a new atomic arrangement with both vacancy on 4(b) pyramidal site and substitution of antimony atoms (X) by platinum (B) in the B–XX–B layers (referring to the subcell structure) forming two B––1/2B1/2XX–3/4B and two X–BB–X layers per cell. The structure of CePt2+xSb2−y is compared with those reported before for URh1.6As1.9 and CeNi1.91As1.94.  相似文献   

6.
The crystal structure of the ternary Laves phase ZrTiCu2 with unusual stoichiometry has been determined from combined refinement of X-ray powder, X-ray single crystal and neutron powder intensity data. The derived structure is of type MgZn2 (space group P63/mmc) with lattice parameters a = 0.51491(3) nm, c = 0.82421(8) nm. Crystal symmetry and composition reveal a high degree of atomic disorder, because Ti and Zr atoms share the 4f sites, whereas Ti and Cu atoms are found at the 6h sites. The 2a sites, however, are exclusively occupied by Cu. Lattice parameters for alloys Zr1−xTi1−xCu2+2x (annealed at 800 °C) as a function of the concentration of Cu for a constant ratio of Zr/Ti = 1 vary in a nonlinear way, which is consistent with the described complex atomic substitution mechanism. At a load of 2 N the micro-hardness was measured to be 7.5 ± 0.3 GPa, which is significantly larger than for most of the binary Ti–Cu or Zr–Cu phases. By a density functional theory ab initio approach the site preferences of Zr, Ti and Cu were calculated indicating that a random mixture of Ti and Cu atoms at the 6h lattice sites is a key factor to stabilize the proposed structure, which is unique for a Laves phase. Lattice parameters, elastic constants and shear moduli for polycrystalline ZrTiCu2 were also derived. The Vickers hardness of 6.2 GPa was estimated by applying a correlation between shear modulus and hardness. Data as calculated by the ab initio approach are in good agreement with the experimental findings.  相似文献   

7.
Single crystals of Cu2Zn/Cd/SnSe4 were grown using a solution-fusion method. The crystal structure of the Cu2Zn/Cd,Hg/SnSe4 compounds were investigated using X-ray powder diffraction. These compounds crystallize in the stannite structure (space group I 2m) with the lattice parameters: a=0.56882(9), c=1.13378(9) nm, c/a=1.993 (Cu2ZnSnSe4), a=0.58337(2), c=1.14039(4) nm, c/a=1.955 (Cu2CdSnSe4) and a=0.58288(1), c=1.14179(2) nm, c/a=1.959 (Cu2HgSnSe4). Atomic parameters were refined in the isotropic approximation (RI=0.0517, RI=0.0511 and RI=0.0695 for Cu2ZnSnSe4, Cu2CdSnSe4 and Cu2HgSnSe4, respectively).  相似文献   

8.
A new langasite type single crystal Ca3NbGa3Si2O14 (CNGS) was grown by Czochralski (CZ) method. The structure of CNGS crystal was determined by X-ray powder diffraction, the lattice parameters were a=0.8087 ± 0.0001 nm, c=0.4974 ± 0.0002 nm, V=0.2817 ± 0.0002 nm3; The congruency of CNGS was examined by measuring the chemical composition of the grown crystal by quantitative X-ray fluorescent (XRF) analysis. The melting point of CNGS crystal was measured by using the differential scanning calorimetry (DSC). Dielectric properties of (1 1 0) wafer plate were studied in the temperature range from 298.15 to 873.15 K; the frequency dependence of dielectric loss in the frequency range 10 Hz–13 MHz was measured.  相似文献   

9.
Four new ternary iridium phosphides were prepared by reaction of the elements at 900–1100 °C. Their structures were determined by means of single-crystal X-ray methods. EuIrP (a = 6.272(1) Å) and BaIrP (a = 6.531(1) Å) crystallize in a SrSi2-type derivative structure (LaIrSi-type structure; P213; Z = 4). EuIr2P2 (a = 6.671(1), c = 7.055(1) Å) and SrIr2P2 (a = 6.693(1), c = 7.061(1) Å) form a new structure (P3221; Z = 3). All the P atoms and half of the Ir atoms build up a three-dimensional framework with the Eu(Sr) atoms and the remaining Ir atoms in the cavities. The latter atoms form threefold screws along [001] with short Ir---Ir distances. Magnetic measurements of EuIrP and EuIr2P2 show that europium is divalent in both compounds.

Zusammenfassung

Vier neue ternäre Iridiumphosphide wurden durch Umsetzung der Elemente bei 900–1100 °C dargestellt. Die Bestimmung der Strukturen erfolgte mit Röntgen-Einkristallmethoden. EuIrP (a = 6,272(1) Å) und BaIrP (a = 6,531(1) Å) kristallisieren in einer Besetzungsvariante der SrSi2-Struktur (LaIrSi-Typ; P213; Z = 4). EuIr2P2 (a = 6,671(1), c = 7,055(1) Å) und SrIr2P2 (a = 6,693(1), c = 7,061(1) Å) bilden eine neue Struktur (P3221; Z = 3). Die P- sowie die Hälfte der Ir-Atome sind miteinander zu einem dreidimensionalen Gerüst verknüpft, in dem sich schraubenförmige Kanäle entlang [001] erstrecken. Diese werden von den Eu(Sr)- sowie den restlichen Ir-Atomen besetzt, wobei letztere in Form regulärer 3-zähliger Schrauben mit kurzen Ir---Ir-Abständen angeordnet sind. Magnetische Messungen an EuIrP und EuIr2P2 zeigen, daβ Europium in beiden Verbindungen zweiwertig vorliegt.  相似文献   


10.
Phase equilibria in the Ce–Ti–Ge system were investigated by X-ray powder diffraction, electron probe X-ray analysis and the isothermal section at 1170 K was obtained. We confirmed the CeFeSi-type CeTiGe compound (a=0.4135 (1) nm, c=0.7921 (1) nm, space group P4/nmm, No. 129). A new compound, Ce20Ti20Ge60, was found (a=0.3967(6) nm, c=6.054 (2) nm, space group P4). It is obvious that the ThSi2-type Ce33Ti7Ge54 compound (a=0.4217 (1) nm, c=1.4184 (3) nm, space group I41/amd, No. 141) belongs to the extended solid solution region of the ThSi2-type CeGe2 compound.  相似文献   

11.
The subsolidus phase relation of the system ZnO–Li2O–MoO3 has been investigated by X-ray diffraction (XRD) analyses. The phase diagram has been constructed. There are six binary compounds and one ternary compound in this system. The phase diagram comprises nine three-phase regions. The ternary compound Li2Zn2(MoO4)3 is refined by the Rietveld method. It belongs to an orthorhombic system with space group Pnma and lattice constants a = 5.1114 Å, b = 10.4906 Å, c = 17.6172 Å.  相似文献   

12.
A new modification of the compound Ba3YB3O9, β phase, has been attained through solid phase transition from phase at 1125–1134 °C. β-Ba3YB3O9 crystallizes in the hexagonal space group with cell parameters a=13.0529(8) Å, c=9.5359(9) Å. The crystal structure of -Ba3YB3O9 has been determined from powder X-ray diffraction (XRD) data. The refinement was carried out using the Rietveld methods and the final refinement converged with Rp=8.8%, and Rwp=11.8% with Rexp=5.65%. In its structure, the isolated [BO3]3− anionic groups are parallel to each other and distributed layer upon layer along the c-axis. The Y atoms are six-coordinated by the O atoms to form octahedra. The result of IR spectrum confirmed the existence of [BO3]3− triangular groups.  相似文献   

13.
Metastable Fe–Cr alloy films of various composition prepared by cross-beam pulsed laser deposition using two different procedures are investigated by wide-angle X-ray scattering. Depending on the Fe–Cr composition of the samples in an extended range, a body-centered cubic (bcc) phase or metastable phases with body-centered tetragonal (bct), face-centered orthorhombic (fco) or primitive orthorhombic (po) and primitive cubic (pc) lattices are formed in the films prepared by simultaneous co-deposition of Fe and Cr. In the films produced by layer-by-layer deposition of thin separate Fe and Cr layers (thickness of about 1 nm), only bcc and bct Fe–Cr phases were observed. A long-time annealing (50 h) at a temperature of 425 °C near the low-temperature existence limit of the σ-phase under equilibrium conditions followed by slow cooling (rate 0.5 °C/min) has been performed and various phase transformations were observed. In addition to known equilibrium and metastable Fe–Cr crystalline phases (mainly bcc and bct phases in the films prepared by layer-by-layer technique and bcc, bct and σ-FeCr phases in co-deposited films), a new metastable Fe–Cr superstructure characterised by a primitive tetragonal lattice with parameters a and c of about 0.57 and 0.63 nm, respectively, has been identified. It is shown that the formation of ″-crystallites with preferred orientation in the metastable Fe–Cr alloy films during dedicated long-time annealing gives rise to a spatially periodic modulation of chemical composition resulting in the formation of multilayers with periods of one or a few atomic monolayers of individual Fe and Cr components.  相似文献   

14.
Two ternary alkali earth silver bismuthides, CaAgBi and BaAg1.837Bi2, have been synthesized by solid-state reactions of the corresponding metals in welded Nb tubes at high temperature. Their structures have been established by single-crystal X-ray diffraction studies. CaAgBi crystallizes in the hexagonal space group P63mc (No.186) with cell parameters of a = b = 4.8113(4) Å, c = 7.8273(9) Å, V = 156.92(3) Å3, and Z = 2. BaAg1.837Bi2 belongs to tetragonal space group P4/nmm (No.129) with cell parameters of a = b = 4.9202(2) Å, c = 11.628(1) Å, V = 281.50(3) Å3, and Z = 2. The structure of CaAgBi is of the LiGaGe type, and features a three-dimensional four-connected (3D4C) anionic network with Ca2+ encapsulated in the channels formed by [Ag3Bi3] six-membered rings. BaAg1.837Bi2 is isostructural with CaBe2Ge2, a variant of the tetragonal ThCr2Si2-type structure. Its structure exhibits a three-dimensional anionic network built of (0 0 1) and (0 0 2) puckered [Ag2Bi2] layers interconnected via additional Ag–Bi bonds along the c-axis. BaAg1.837Bi2 is metallic based on band structure calculations.  相似文献   

15.
The crystal structures of the Ag4HgGe2S7 and Ag4CdGe2S7 compounds were investigated using X-ray powder diffraction. These compounds crystallize in the monoclinic Cc space group with the lattice parameters a=1.74546(8), b=0.68093(2), c=1.05342(3) nm, β=93.398(3)° for Ag4HgGe2S7 and a=1.74364(8), b=0.68334(3), c=1.05350(4) nm, β=93.589(3)° for Ag4CdGe2S7. Atomic parameters were refined in the isotropic approximation (RI=0.0761 and RI=0.0727, respectively).  相似文献   

16.
The phase content of the Sm(Fe1−xSix)y alloys (0.05≤x≤0.15; 8.5≤y≤12) has been studied by X-ray diffraction using micromonocrystals. The compounds Sm2(Fe,Si)17, Sm(Fe,Si)12 and a novel Sm3(Fe,Si)29 compound with a monoclinic unit cell are found. The lattice parameters of Sm3(Fe,Si)29 are: a=1.056 nm, b=0.850 nm, c=0.966 nm, β=96.8°. This compound forms as a result of a solid state transformation from the high-temperature Sm2(Fe,Si)17 phase. Diffuse effects observed in rocking photographs suggest transition structures arising from this transformation. The Curie temperatures of Sm3(Fe,Si)29 vary in the interval 496–521 K.  相似文献   

17.
The structural relationship between the hydride phases in Ti–Mo–H solid solution system (Mo content up to 15 at% in the alloy) during dehydrogenation process under annealing has been studied by conventional and in situ X-ray powder diffraction and transmission electron microscopy (TEM) analysis. During dehydrogenation, the saturated hydrides of the Ti–Mo alloys with fcc δ-phase structure transfer into bcc β-phase at higher temperatures. An associated hydrogen concentration reduction for the δ-phase hydride is observed in the process. However, as the hydrogen concentrations decrease to certain values (H/M  1.1–1.7), the unsaturated δ-phase formed at high temperature would become unstable at lower temperature, and transfer into a tetragonal phase (denoted the -phase here). Unlike that of the -phase in Ti–H system, the phase transition does not occur for the saturated δ-phase with hydrogen concentration close to the stoichiometric limit. The hydrogen concentration of this -phase hydride is in between that of the tetragonal γ and -phase in Ti–H system, but more close to the γ-phase. The occurrence region of this -phase expands along with the increase of the Mo content in the alloys. The phase has a lattice similar to that of the -phase in Ti–H system with corresponding fct unit-cell c/a < 1.  相似文献   

18.
A novel molybdenum diphosphate, Mo1.3O(P2O7), was obtained by electrochemical lithium deintercalation. The diphosphate crystallises in space group I2/a with the lattice parameters a=22.88(1), b=22.94(2), c=4.832(1) Å, γ=90.36°, Z=8. Its original framework is built up from MoO6 octahedra, P2O7 groups and also from MoO4, Mo2O4 and Mo3O8 units containing Mo2 and Mo3 clusters. These polyhedra delimit large octagonal and z-shaped tunnels running along c, in which the inserted cations may be located.  相似文献   

19.
Two novel polyphosphides, NaP5 and CeP5, were prepared in a BN crucible by the reaction of elemental components under a high pressure of 3 GPa at 800–950 °C. The X-ray structural analysis showed that NaP5 crystallizes in an orthorhombic space group Pnma with a=10.993(2) Å, b=6.524(1) Å, c=6.903(1) Å, Z=4 and CeP5 in the monoclinic group P21/m with a=4.9143(5) Å, b=9.6226(8) Å, c=5.5152(4) Å, β=104.303(6)°, Z=2. The crystal structure of NaP5 consists of a three-dimensional framework 3[P5]1− constructed by P---P bonds among four crystallographically inequivalent phosphorus sites, with large channels hosting the sodium cations, while CeP5 is a layered compound containing 2[P5]3− polyanionic layers that are separated by Ce3+ ions. NaP5 exhibits the diamagnetic behavior, while the temperature-dependent magnetic susceptibility of CeP5 essentially follows the Curie–Weiss law.  相似文献   

20.
The subsolidus phase relations of the system Y2O3–Na2O–B2O3 are reported. There are seven binary compounds and two ternary compounds in this system. A new ternary compound Na2Y2B2O7 is identified. The structure has been determined for the compound Na2Y2B2O7 from powder X-ray diffraction. The lattice constants of P21/c for the compound Na2Y2B2O7 are a=10.5993(1) Å, b=6.2311(1) Å, c=10.2247(1) Å, β=117.756(1)° and z=4. The structure can be described as being made up of isolated BO3 triangles and YO8 polyhedra. The photoluminescence properties of Eu ion-doped Na2Y2B2O7 and Na3Y(BO3)2 show strong red-emission of the 5D07F2 transitions at 611 and 615 nm, respectively. The results of emission spectra are in good agreement with the crystallographic study. The relationship between Eu ion content and emission intensity is analyzed too.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号