共查询到18条相似文献,搜索用时 79 毫秒
1.
图像分割是图像处理的一个基本问题,阈值法是图像分割的常用方法.通过建立最大熵双阈值数学模型和设计遗传算法,对双阈值图像分割进行了有效的解决.进一步提出了遗传算法的改进,能准确找出图像分割的双阈值,对分析和理解图像具有重要用处. 相似文献
2.
基于二维阈值化和遗传算法的图像分割方法 总被引:4,自引:0,他引:4
本文以二维最大熵为例,讨论了如何利用遗传算法和二维直方图进行图像阈值的自动选取。实验结果表明,利用遗传算法可以有效地提高原有图像阈值选取方法的速度。 相似文献
3.
基于遗传算法的最佳熵阈值的图像分割 总被引:12,自引:1,他引:12
Kapur等人提出的最佳熵阈值的图像分割具有很多优点,但同时也需要大量的运算时间,限制了其实际的应用范围,且最佳熵阈值的确定是一有待解决的问题,文章将遗传算法应用于最佳熵阈值的确定中,提出了相应的算法并用于图像分割,仿真结果表明,在设定了合适的遗传算子后,遗传算法不仅可以实现正确的图像分割,并且使得分割速度大大提高。 相似文献
4.
图像分割是图像处理和计算机视觉的重要研究领域.基于图像的灰度级特征,以目标和背景最大程度地分开为判据,文章提出了一种简捷的自动识别最优阈值的方法,该方法将遗传算法引入图像分割,利用遗传算法具有的快速寻优特点,优化了求解阈值的过程,对更多图像都可以给出最佳的阈值,达到较好的图像分割效果,大大缩短了计算时间. 相似文献
5.
将改进遗传算法用于图像分割,利用判断分析法和最佳熵自动阈值法两种阈值分割方法进行实验并加以比较,结果表明,利用最佳熵自动阈值法进行的图像分割优于判断分析法. 相似文献
6.
基于免疫遗传算法的图像多阈值分割 总被引:2,自引:2,他引:2
针对H.D.Cheng等人提出的模糊最大熵原则阈值分割法存在着计算量巨大的问题,将具有高效鲁棒性、自适应性、并行性的免疫遗传算法引入阈值自动选取算法中,并针对该方法的疫苗选取会导致收敛到局部最优解等问题,给出了高效的自适应疫苗选取新方法。通过实验显示了该算法在收敛性和计算效率上较其它优化算法具有更好的优越性。 相似文献
7.
基于混沌遗传算法的图像阈值分割 总被引:7,自引:1,他引:7
阈值分割是图像分割中的一种常用的有效方法。但传统的阈值分割方法在多阈值的情况下,运算量急剧增加。该文将混沌遗传算法与阈值分割方法融合,利用混沌运动的随机性、遍历性和初值敏感性进行种群初始化和变尺度变异。实验结果表明,与遗传算法相比,混沌遗传算法用于阈值寻优减少了运算时间,提高了收敛率。 相似文献
8.
基于二维最大熵的图像分割算法充分考虑了点灰度和邻域灰度均值,较好地克服了图像中噪声带来的影响,将分层遗传算法引入到此图像分割算法中,加快了阈值搜索的收敛进度,大大提高了计算速度,有效地避免了局部最优解的情况,是一种实用有效的图像分割算法。 相似文献
9.
基于遗传算法的最优直方图阈值图像分割算法 总被引:3,自引:0,他引:3
为了保证遗传算法能够尽快收敛到全局最优解,避免早熟现象发生,提出了适应度标定公式,保证适应度函数值总为正值。新的适应度函数能够正确引导群体的发展方向,提高选择压力;提出了相似度概念,保留相似性差的个体,剔除相似性个体。在不增加群体规模的前提下,增加了群体的多样性。为了有效地对图像进行分割,提出基于改进遗传算法的图像分割方法,采用Otsu公式,找出分割图像最优阈值。给出不同改进遗传算法计算实例比较和不同图像分割方法效果图。 相似文献
10.
鉴于医学超声图像的信噪比较低,用经典的边缘提取算法无法得到较好的结果,因此,提出超声图像自动分割的一种新方法.其基本思想是在水平集分割方法的基础上,以能量函数作为评价函数,把图像分割问题变成一个优化问题,利用遗传算法的寻优高效性,搜索到能使分割质量到达最优的轮廓曲线.应用此方法对肝脏超声图像进行肿瘤的边缘提取,得到比较好的结果,从而完成图像的自动分割. 相似文献
11.
图像分割是图像处理的一个重要领域.阈值法是一种最简单、最基本的图像分割方法.确定最佳阈值是阈值分割法的关键,利用遗传算法的特点来快速准确地确定灰度图像直方图熵的最佳分割阅值,实现图像分割.通过仿真试验验证,分割效果明显,该算法具有很好的应用前景. 相似文献
12.
基于改进粒子群算法的图像闭值分割方法 总被引:1,自引:0,他引:1
针对图像提取问题,最优阈值选取是否合理对图像分割效果至关重要。在处理不同种类图像区域时,粒子群算法(PSO)由于早熟现象难以准确计算最优分割阈值,因此导致图像分割准确率低。为了提高图像分割准确率且准确地提取出图像目标,提出一种基于混沌粒子群算法(CPSO)的图像阈值分割方法。受益于混沌运行的遍历性、对初始条件的敏感性等优点,CPSO很好地解决了PSO的粒子群过早聚集和陷入局部最优等难题,加快了全局搜索最优解的能力。采用具体图像对CPSO算法图像分割性能进行仿真实验,结果表明,相比于其它图像分割算法,CPSO不仅加快了运算速度,提高了图像分割效率,而且提高了图像分割准确率,非常适合于图像实时分割处理。 相似文献
13.
14.
利用遗传算法实现数字图像分割 总被引:10,自引:0,他引:10
本文将遗传算法引入数字图像分割之中,在此基础上,利用文献[5]提出的一种具有每个基因位交叉概率自适应变化的新交叉操作的改进型遗传算法来实现数字图像的分割,模拟结果表明,本文虎法用于数字图像分割,其收敛性能远远高于文献[2]的传统方法和标准遗传算法。 相似文献
15.
一种混合遗传算法在图像分割中的应用 总被引:8,自引:0,他引:8
在图像分割中,最小误差法计算简单,受目标和噪声影响小,对小图像仍具很好的分割效果,但计算量大,不利于实时处理。为解决这一问题,该文将遗传算法和退火算法引入到最小误差法中,结合遗传算法的全局寻优能力和模拟退火算法较强的局部搜索能力,提出一种高效的混合遗传算法(GASA),充分利用该混合算法快速和稳定性强的优点来减少最小误差法的运算量,不仅能够提高运算收敛速度和收敛效率,而且可以有效避免出现早熟现象,防止陷入局部最优,同时性能也很稳定,完全能满足实时系统中精度和速度的要求,得到较好的分割效果。 相似文献
16.
基于改进的最大类间方差算法的图像分割研究 总被引:2,自引:0,他引:2
每种图像分割方法都只利用了图像信息中的部分特征,必然带有局限性,因此只能针对各种实际应用领域的需求来适当选择所需的方法.比较了几种阈值分割和边缘检测算法,着重研究了最大类阃方差算法,并对其进行改进.针对不同的图像进行了仿真,对实验结果进行了分析、研究、比较.结果表明,改进的Otsu算法能有效地提高图像分割的质量. 相似文献
17.
近年来,建立在图论基础上的谱聚类算法作为一种新型的工具被应用于图像分割。其本质是将图像分割转化为最优化问题,其中的最小最大割算法(Min-max cut)能充分满足聚类算法的准则。算法实现过程中,把最优化准则转化为特征系统进行求解。该实现方法计算复杂,随着图像尺寸的增加,所需存储空间和计算时间复杂度都会增加。在实现最小最大割算法时,用基于灰度级的权值矩阵代替通常所用的基于图像像素的权值矩阵来描述图像各像素的关系,确定分割的阈值。实验表明,此方法实现的最小最大割算法实现简单、实时性高,具有自动分割等优越的分割性能。 相似文献