首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Irradiation effects of 50 MeV7Li+3 ion beam induced in bulk PVDF polymer have been studied with respect to their optical, chemical, structural and electrical behaviour by using UV-visible, FT-IR spectroscopy, XRD technique and electrical frequency response using LCR bridge. The ion fluences ranging from 1.27 X 1011 to 2.15 X 1013 ions cm-2 have been used to study dose effects of irradiation in PVDF. The recorded UV-visible spectra clearly shows five characteristic peaks at 315, 325, 360, 425 and 600 nm. Due to irradiation, the optical absorption initially decreases but then increases with higher fluences. In the FT-IR spectra, no appreciable change has been observed after irradiation, indicating that this polymer is chemically stable. There is exponential increase in admittance with log of frequency but the effect of irradiation is not quite appreciable. The value of tan δ and relaxation frequency are changed appreciably due to irradiation. The diffraction pattern of PVDF indicates that this polymer is in semi-crystalline form; a decrease in the crystallinity and crystallite size has been observed due to irradiation  相似文献   

2.
《Vacuum》2012,86(3):275-279
We have investigated neutron irradiation effects on the optical, structural and chemical properties of polyallyl diglycol carbonate (PADC) polymer, commercially named as CR-39. For this purpose, PADC samples were exposed with 4 MeV Am–Be neutron source at fluences varying from 2.36 × 106 to 5.94 × 107 n/cm2. The modifications so induced were analyzed using UV–Visible spectroscopy, X-ray diffraction Measurement (XRD), Photoluminescence (PL) and Fourier Transform infrared (FTIR) spectroscopy in the total attenuation reflection (ATR) mode. UV–Vis spectra of pristine and neutron irradiated PADC polymer sheets exhibit a decreasing trend in optical band gap. This decline in optical band gap with increasing fluence has been discussed on the basis of neutron irradiation induced defects in PADC. The XRD pattern of PADC shows the decreasing intensity of peak positions with increasing in fluence, which suggest that semicrystallinity of PADC changes slightly to amorphous phase after irradiation. At low fluence, crystallinity was found to increase but at higher fluence, it decreased which could be ascribed to neutron- induced defects in the polymer samples. Crystallite size calculated using Scherrer formula indicates a change and reflects the formation of disordered system in the irradiated polymer samples. The PL spectra show that the intensity of PL peak decreased with increase in fluence, which may be due to the disordered system via creation of defects in the irradiated polymer. The FTIR spectrum shows an overall reduction in intensity of the typical bands, indicating the degradation of PADC polymer after irradiation. These results so obtained can be used successfully in dosimetery using well reported protocols.  相似文献   

3.
The samples of SR-86 polymer were irradiated with12C5+ ions of energy 5·0 MeV/u using fluences of 1011−1014 ions/cm2 at NSC Pelletron in a high vacuum scattering chamber. The optical studies show an increase in absorption of UV or IR in the shorter wavelength region (250–500 nm). The study also reveals that the increase in radiation dose extends the optical absorption region to longer wavelengths. It is observed that the bulk etch rate of this polymer is enhanced after heavy ion irradiation.  相似文献   

4.
Polycrystalline aluminum oxide is synthesized by combustion technique and XRD studies of the sample revealed the α-phase. The synthesized sample is irradiated with 120 MeV swift Au9+ ions for the fluence in the range from 1 × 1011 to 1 × 1013 ions cm−2. A broad photoluminescence (PL) emission with peak at ∼ 447 nm and two sharp emissions with peak at ∼ 679 and ∼ 695 nm are observed in pristine when sample was excited with 326 nm. However, in the irradiated samples the PL intensity at ∼ 447, 679 and 695 nm decreases with increase in ion fluence. The α-Al2O3 gives rise to seven Raman modes with Raman intensity with peaks at ∼ 253, 396, 417, 546, 630, 842, 867 cm−1 observed in pristine. The intensity of these modes decreases with increase in ion fluence. However, the Raman modes observed at lower fluences are found to disappear at higher fluence.  相似文献   

5.
The effect of high-energy (50 MeV) Li3+ ion beam irradiation on polypropylene (PP) film has been studied in the fluence range 2.4 × 1012−l.5 × 1014 ions/cm2. The a.c. electrical properties of PP films were measured in the frequency range from 0.05– 100 kHz, and at temperature range between 30 and 140°C. This study indicates two peaks at 60°C and 120°C with comparatively high magnitudes. There is an exponential increase in conductivity with log of frequency and the effect is significant at higher fluences. The loss factor (tan δ) vs frequency plot suggests that PP film based capacitors may be useful below 10 kHz. The capacitance is constant over a wide temperature range up to 130°C. FTIR spectra of the PP films before and after irradiation indicate that intensity of C-H stretching vibration at 2900 cm−1 is modified. The presence of many new peaks with the increase of fluence suggests the formation of alkanes and alkynes which might be responsible for the observed changes in the dielectric and electrical properties of PP films.  相似文献   

6.
Indium nanoparticles were formed by laser etching an InP (100) wafer in a 10% chlorine–helium atmosphere maintained at ~5–8 × 10−5 Torr. The wafer was irradiated by a homogenized ultraviolet beam with a series of 50–4500 pulses at a fluence of 230 mJ/cm2. The surface was also irradiated using fluences from 50 to 340 mJ/cm2 with 600 pulses. The irradiated surfaces were studied using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy. Raman spectroscopy confirmed that the irradiated surface layer remains crystalline. According to EDS analysis, the surface particles are composed primarily of indium. SEM images show that the number of pulses and the pulse intensity can control the size distribution of the particles.  相似文献   

7.
This paper presents the modification in electrical conductivity of Zn nanowires under swift heavy ions irradiation at different fluences. The polycrystalline Zn nanowires were synthesized within polymeric templates, using electrochemical deposition technique and were irradiated with 80 MeV Si7+ and 110 MeV Ni8+ ion beams with fluence varying from 1 × 1012 to 3 × 1013 ions/cm2. I–V characteristics of exposed nanowires revealed a decrease in electrical conductivity with increase in ion fluence which was found to be independent of applied potential difference. But in the case of high fluence of Ni ion beam (3 × 1013 ions/cm2), electrical conductivity was found to increase with potential difference. The analysis found a significant contribution from grain boundaries scattering of conduction electrons and defects produced by ion beam during irradiation on flow of charge carriers in nanowires.  相似文献   

8.
The effect of 120 MeVAg9+ ion irradiation on the structural, optical and luminescence properties of NaSr1-xBO3:xDy3+ (x = 0.5–2.5 mol%) phosphor synthesized by the conventional solid state reaction route is reported. The samples were irradiated with Ag9+ swift heavy ions (SHIs) using fluences of 1 × 1012, 5 × 1012 and 1 × 1013 ions cm?2. The unirradiated as well as irradiated samples were characterized by powder X-ray diffraction (PXRD), diffuse reflectance (DR) and photoluminescence techniques. PXRD confirms no change in the phase after irradiation except that loss of crystallinity had been observed which may be due to the fragmentation caused by the SHI. A blue shift in the absorption band of the DR was observed, resulting in an increase in the band gap from 5.61 eV to 5.77 eV, after ion irradiation. An increase in photoluminescence intensity (excited at 385 nm) was observed with increased ion fluences. The ratio of the blue to yellow emission peaks (I483/I577) was calculated and found to be varying with ion fluences suggesting that the white light can be achieved by tailoring this yellow to blue ratio. The Commission Internationale de l’Eclairage coordinates were calculated and found to move toward the white region after irradiation.  相似文献   

9.
An ion conducting polymer nanocomposite electrolyte (PNCE) series of film based on an amorphous polymer host (PMMA)–lithium salt (LiClO4) complex dispersed with nanocrystalline yttria stabilized zirconia (n-YSZ) is reported. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analysis have confirmed feasibility of interaction among composite components (i.e. polymer–ion–filler). Ions in the PNCE matrix are present in the form of both free cations/anions as well as contact ion pairs and their concentration depends on filler loading in the matrix. Electrical conductivity enhancement on n-YSZ dispersion occurs by ~2 orders of magnitude at 30 °C and by ~5 orders of magnitude at 100 °C when compared with room temperature conductivity of the undispersed polymer salt (PS) film. The highest achieved conductivity value is ~1.3 × 10−4 S cm−1 at 100 °C for 2 wt% n-YSZ. An excellent correlation between variation of d.c. conductivity and free mobile charge carriers versus filler loading has been observed. This correlation has been attributed to filler-induced polymer–ion–filler interaction. These evidences have formed the basis to propose a mechanism for ion transport.  相似文献   

10.
Semiconductor nanocrystals (NCs) have received much interest for their optical and electronic properties. When these NCs dispersed in polymer matrix, brightness of the light emission is enhanced due to their quantum dot size. The CdCuS NCs have been synthesized by chemical route method and then dispersed in PMMA matrix. These nanocomposite polymer films were irradiated by swift heavy ion (SHI) (100 MeV, Si+7 ions beam) at different fluences of 1 × 1010 and 1 × 1012 ions/cm2 and then compared their structural and optical properties by XRD, atomic force microscopy, photoluminescence, and UV-Vis spectroscopy before and after irradiation. The XRD spectra showed a broad hump around 2θ ≈ 11·83° due to amorphous PMMA and other peaks corresponding to hexagonal structure of CdS nanocrystals in PMMA matrix. The photoluminescence spectra shows a broad peak at 530 nm corresponding to green emission due to Cu impurities in CdS. The UV-Vis measurement showed red shift in optical absorption and bandgap changed from 4·38–3·60 eV as the irradiation fluency increased with respect to pristine CdCuS nanocomposite polymer film.  相似文献   

11.
Polymethyl methacrylate (PMMA) was prepared by solution polymerization method. Different concentrations (10, 20 and 40%) of Ni powder were dispersed in PMMA and the composite films were prepared by casting method. These films were irradiated with 120 MeV Ni10 +  ions at a fluence of 5 × 1012 ions/cm2. Electrical, structural and chemical properties of the composites were studied by means of an LCR meter, X-ray diffraction, FTIR spectroscopy and SEM/AFM, respectively. The results showed that the conductivity increases with metal concentration and also with ion beam irradiation. This reveals that ion beam irradiation promotes the metal/polymer bonding and converts polymeric structure into hydrogen depleted carbon network. It was observed from XRD analysis that percentage crystallinity and crystalline size decrease upon irradiation. This might be attributed to rupture of some polymeric bonds, which is also corroborated with FTIR spectroscopic analysis. Ion beam tempts graphitization of polymeric material by emission of hydrogen and/or other volatile gases. Surface morphology of the pristine and irradiated films was studied by atomic force microscopy (AFM)/scanning electron microscopy (SEM). Result showed that the surface roughness increases after ion beam irradiation.  相似文献   

12.
Thin films of polymethyl methacrylate (PMMA) were synthesized. Ferric oxalate was dispersed in PMMA films. These films were irradiated with 80 MeV O6+ ions at a fluence of 1×1011 ions/cm2. The radiation induced changes in electrical conductivity, Mössbauer parameter, microhardness and surface roughness were investigated. It is observed that hardness and electrical conductivity of the film increases with the concentration of dispersed ferric oxalate and also with the fluence. It indicates that ion beam irradiation promotes (i) the metal to polymer bonding and (ii) convert the polymeric structure into hydrogen depleted carbon network. Thus irradiation makes the polymer harder and more conductive. Before irradiation, no Mössbauer absorption was observed. The irradiated sample showed Mössbauer absorption, which seems to indicate that there is significant interaction between the metalion and polymer matrix. Atomic force microscopy shows that the average roughness (R a) of the irradiated film is lower than the unirradiated one.  相似文献   

13.
We have investigated neutron irradiation effects on the optical, structural and chemical properties of polyallyl diglycol carbonate (PADC) polymer, commercially named as CR-39. For this purpose, PADC samples were exposed with 4 MeV Am-Be neutron source at fluences varying from 2.36 × 106 to 5.94 × 107 n/cm2. The modifications so induced were analyzed using UV-Visible spectroscopy, X-ray diffraction Measurement (XRD), Photoluminescence (PL) and Fourier Transform infrared (FTIR) spectroscopy in the total attenuation reflection (ATR) mode. UV-Vis spectra of pristine and neutron irradiated PADC polymer sheets exhibit a decreasing trend in optical band gap. This decline in optical band gap with increasing fluence has been discussed on the basis of neutron irradiation induced defects in PADC. The XRD pattern of PADC shows the decreasing intensity of peak positions with increasing in fluence, which suggest that semicrystallinity of PADC changes slightly to amorphous phase after irradiation. At low fluence, crystallinity was found to increase but at higher fluence, it decreased which could be ascribed to neutron- induced defects in the polymer samples. Crystallite size calculated using Scherrer formula indicates a change and reflects the formation of disordered system in the irradiated polymer samples. The PL spectra show that the intensity of PL peak decreased with increase in fluence, which may be due to the disordered system via creation of defects in the irradiated polymer. The FTIR spectrum shows an overall reduction in intensity of the typical bands, indicating the degradation of PADC polymer after irradiation. These results so obtained can be used successfully in dosimetery using well reported protocols.  相似文献   

14.
Microstresses developed in the crystallites of polymeric material due to irradiation of high-energy particle causes peak broadening and shifting of X-ray diffraction lines to lower angle. Neutron irradiation significantly changes the material properties by displacement of lattice atoms and the generation of helium and hydrogen by nuclear transmutation. Another important aspect of neutron irradiation is that the fast neutron can produce dense ionization at deep levels in the materials. The polyethylene terephthalate (PET) fibre of raw denier value, 78.2, were irradiated by fast neutron of energy, 4.44 MeV, at different fluences ranging from 1×109 n/cm2 to 1 × 1012 n/cm2. In the present work, the radiation heating microstresses developed in PET micro-crystallites was investigated applying X’Pert-MPD Philips Analytical X-ray diffractometer and the effects of microstresses in tensile strength of fibre measured by Instron have also been reported. The shift of 0.45 cm−1 in the Raman peak position of 1614.65 cm{−1} to a higher value confirmed the development of microstresses due to neutron irradiation using micro-Raman technique. The defects due to irradiation were observed by SEM micrographs of single fibre for virgin and all irradiated samples.  相似文献   

15.
The permeability and stability of microencapsulated epoxy resins   总被引:1,自引:0,他引:1  
Microcapsules containing self-healing agents have been introduced into polymer to self-heal the microcracks and toughen the brittle matrix. Poly(urea–formaldehyde) (PUF) microcapsules containing epoxy resins are potential for the self-healing and toughening polymer. The resistance to medium surroundings of microcapsules is required. In the present study, PUF microcapsules containing epoxy resins were prepared by in situ polymerization. The effects of diameter, surface morphology and wall thickness on the permeability and stability of microcapsules in thermal and solvent surroundings were investigated. The morphology of microcapsule was investigated using optical microscope (OM), metalloscope (MS) and scanning electron microscope (SEM), respectively. The composition on the surface of microcapsule was analyzed by using energy dispersive analysis of X-ray (EDAX). The thermal properties of microcapsules were investigated using differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). The thermal permeability of core increases and the stability of microcapsule decreases with the enhancement of heating temperature mainly due to the expansion of epoxy resins below 251 °C and the decomposition of PUF above 251 °C. At room temperature, the permeability constants of core materials of microcapsules in acetone solvent are small and they are 1.20 × 10−3 m s−1, 1.39 × 10−3 m s−1 and 1.60 × 10−3 m s−1 corresponding to the microcapsules with diameters of 400 ± 50 μm, 230 ± 40 μm and 120 ± 30 μm. Increasing the surface smoothness, diameter and wall thickness can decrease the permeability and improve the stability of microcapsules in thermal and solvent surroundings.  相似文献   

16.
Small angle magnetization rotation of Metglas 2826MB, 2605SC and 2605CO and Vitrovac 4040 ribbons under both tensile and compressive stress is investigated. It appears that there is no significant difference between the saturation magnetostriction of a ribbon when measured in tension or compression. Values determined forλ s are 2826MB: 12.5±0.7×10−6; 2605SC: 30±2×10−6; 2605CO: 37±2×10−6 and 4040: 10.4±0.7×10−6.  相似文献   

17.
Structural and free volume properties of polyallyl diglycol carbonate (PADC) commercially known as CR-39 polymer films of thickness 250 μm were irradiated with 50 MeV Li3+ ions at the fluences ranging from 1 × 1011 to 1 × 1014 ions/cm2. The structural studies were investigated by X-ray diffraction measurement. The crystallite size as well as percentage crystallinity was calculated from the X-ray diffraction data. The change in the crystallite size, peak broadening and variation in the intensity of X-ray peak shows significant increase in amorphous phases of the polymer samples at higher fluences. Free volume properties were studied by Positron Annihilation Lifetime Spectroscopy (PALS). Hole radius (R), free volume (Vf) and fractional free volume (Fv) were calculated by using the Tao–Eldrup Model. There is a gradual decrease in the hole radius and free volume up to the fluence of 1 × 1012 ions/cm2. It could be attributed to the cross linking of polymer chains whereas subsequent irradiation resulted in an additional defect generation that aided to the free volume growth by their condensation on to the existing free volume defects. The free volume increases at higher fluences whereas degree of crystallinity shows opposite behavior at higher fluences.  相似文献   

18.
2,3-Di-(2′-hydroxyethoxy)benzylidenemalononitrile (3) was prepared and condensed with 2,4-toluenediisocyanate and 3,3′-dimethoxy-4,4′-biphenylenediisocyanate to yield novel Y-type polyurethanes 4–5 containing 2,3-dioxy benzylidenemalononitrile group as a nonlinear optical (NLO)-chromophore, which constituted parts of the polymer backbones. Polyurethanes 4–5 were soluble in common organic solvents such as acetone and N,N-dimethylformamide. They showed a thermal stability up to 270 °C in thermogravimetric analysis thermograms and the glass-transition temperatures (T g) obtained from differential scanning calorimetry thermograms were around 116–135 °C. The second harmonic generation (SHG) coefficients (d 33) of poled polymer films at 106.4 mm−1 fundamental wavelength were around 9.07 × 10−19 C (2.72 × 10−9 esu). The dipole alignment exhibited high thermal stability up to 10 °C higher than T g, and there was no SHG decay below 145 °C due to the partial main-chain character of the polymer structure, which was acceptable for nonlinear optical device applications.  相似文献   

19.
Ge nanocrystallites (Ge-nc) have been formed by ion implantation of Ge+74 into SiO2 matrix, thermally grown on p-type Si substrates. The Ge-nc are examined by Raman spectroscopy, photoluminescence (PL) and Fourier transform infrared spectroscopy (FTIR). The samples were prepared with various implantation doses [0.5; 0.8; 1; 2; 3; 4] × 1016 cm−2 with 250 keV energy. After implantation, the samples were annealed at 1,000 °C in forming gas atmosphere for 1 h. Raman intensity variation with implantation doses is observed, particularly for the peak near 304 cm−1. It was found that the sample implanted with a doses of 2 × 1016 cm−2 shows maximum photoluminescence intensity at about 3.2 eV. FTIR analysis shows that the SiO2 film moved off stoichiometry due to Ge+74 ion implantation, and Ge oxides are formed in it. This result is shown as a reduction of GeOx at exactly the doses corresponding to the maximum blue-violet PL emission and the largest Raman emission at 304 cm−1. This intensity reduction can be attributed to a larger portion of broken Ge–O bonds enabling a greater number of Ge atoms to participate in the cluster formation and at the same time increasing the oxygen vacancies. This idea would explain why the FTIR peak decreases at the same implantation doses where the PL intensity increases.  相似文献   

20.
The effect of H+ ion implantation on surface morphology of the titanium alloy, Ti-6Al-4V, was studied, following H+ ion implantation of 150 keV and 250 keV energy to fluence of 2·6 × 1018 cm−2 and 2·5 × 1019 cm−2, respectively at ambient temperature. No detectable change was observed in surface features of either of the above specimen immediately after the implantation. However, vein like features (VLF) were observed to appear on the surface of the sample, implanted at 150 keV to a fluence of 2·6 × 1018 cm−2, following natural ageing at room temperature for 150 days. Subsequent annealing of the above naturally aged sample, at 423 K for 150 min under vacuum (10−3 torr), led to development of a macroblister.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号